Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем
ВВ Трофимов, МВ Шамолин - Фундаментальная и прикладная …, 2010 - mathnet.ru
Аннотация В работе излагаются результаты, относящиеся к теории геометрических
инвариантов вполне интегрируемых гамильтоновых систем, а также к классификации …
инвариантов вполне интегрируемых гамильтоновых систем, а также к классификации …
Riemannian geometry of Lagrangian submanifolds
BY Chen - Taiwanese Journal of Mathematics, 2001 - projecteuclid.org
RIEMANNIAN GEOMETRY OF LAGRANGIAN SUBMANIFOLDS Bang-Yen Chen 1.
Introduction 2. Basic properties 3. Obstructions to Lagrangian i Page 1 TAIWANESE …
Introduction 2. Basic properties 3. Obstructions to Lagrangian i Page 1 TAIWANESE …
A Riemannian invariant and its applications to submanifold theory
BY Chen - Results in Mathematics, 1995 - Springer
In a previous paper the author has defined a Riemannian invariant δ for Riemannian
manifolds and has obtained some of its applications. In this article, we investigate this …
manifolds and has obtained some of its applications. In this article, we investigate this …
Lagrangian submanifolds of Cn with conformal Maslov form and the Whitney sphere
A Ros, F Urbano - Journal of the Mathematical Society of Japan, 1998 - jstage.jst.go.jp
Let Cn be the n-dimensional complex Euclidean space,(,) the Euclidean metric and J the
canonical complex structure on C's. The Kaehler two form Q is given by Q (v, w)=(v, Jw), for …
canonical complex structure on C's. The Kaehler two form Q is given by Q (v, w)=(v, Jw), for …
On the Gauss map of equivariant immersions in hyperbolic space
C El Emam, A Seppi - Journal of topology, 2022 - Wiley Online Library
Given an oriented immersed hypersurface in hyperbolic space H n+ 1 H^n+1, its Gauss map
is defined with values in the space of oriented geodesics of H n+ 1 H^n+1, which is …
is defined with values in the space of oriented geodesics of H n+ 1 H^n+1, which is …
Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems
VV Trofimov, MV Shamolin - Journal of Mathematical Sciences, 2012 - Springer
This paper presents results concerning the geometric invariant theory of completely
integrable Hamiltonian systems and also the classification of integrable cases of low …
integrable Hamiltonian systems and also the classification of integrable cases of low …
Examples of unstable Hamiltonian-minimal Lagrangian tori in
I Castro, F Urbano - Compositio Mathematica, 1998 - cambridge.org
A new family of Hamiltonian-minimal Lagrangian tori in the complex Euclidean plane is
constructed. They are the first known unstable ones and are characterized in terms of being …
constructed. They are the first known unstable ones and are characterized in terms of being …
[PDF][PDF] Mean curvature flow of monotone Lagrangian submanifolds
K Groh, M Schwarz, K Smoczyk, K Zehmisch - arxiv preprint math/0606428, 2006 - arxiv.org
arxiv:math/0606428v1 [math.DG] 18 Jun 2006 Page 1 arxiv:math/0606428v1 [math.DG] 18
Jun 2006 MEAN CURVATURE FLOW OF MONOTONE LAGRANGIAN SUBMANIFOLDS K …
Jun 2006 MEAN CURVATURE FLOW OF MONOTONE LAGRANGIAN SUBMANIFOLDS K …
Deformations of isotropic submanifolds in Kähler manifolds
We study the first and second variations of isotropic submanifolds which preserve the
isotropy. In order to do so, we introduce the notions of harmonic, exact and isotropic …
isotropy. In order to do so, we introduce the notions of harmonic, exact and isotropic …
A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions
K Cieliebak, E Goldstein - 2004 - projecteuclid.org
In this note we prove a simple relation between the mean curvature form, symplectic area,
and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An …
and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An …