Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем

ВВ Трофимов, МВ Шамолин - Фундаментальная и прикладная …, 2010 - mathnet.ru
Аннотация В работе излагаются результаты, относящиеся к теории геометрических
инвариантов вполне интегрируемых гамильтоновых систем, а также к классификации …

Riemannian geometry of Lagrangian submanifolds

BY Chen - Taiwanese Journal of Mathematics, 2001 - projecteuclid.org
RIEMANNIAN GEOMETRY OF LAGRANGIAN SUBMANIFOLDS Bang-Yen Chen 1.
Introduction 2. Basic properties 3. Obstructions to Lagrangian i Page 1 TAIWANESE …

A Riemannian invariant and its applications to submanifold theory

BY Chen - Results in Mathematics, 1995 - Springer
In a previous paper the author has defined a Riemannian invariant δ for Riemannian
manifolds and has obtained some of its applications. In this article, we investigate this …

Lagrangian submanifolds of Cn with conformal Maslov form and the Whitney sphere

A Ros, F Urbano - Journal of the Mathematical Society of Japan, 1998 - jstage.jst.go.jp
Let Cn be the n-dimensional complex Euclidean space,(,) the Euclidean metric and J the
canonical complex structure on C's. The Kaehler two form Q is given by Q (v, w)=(v, Jw), for …

On the Gauss map of equivariant immersions in hyperbolic space

C El Emam, A Seppi - Journal of topology, 2022 - Wiley Online Library
Given an oriented immersed hypersurface in hyperbolic space H n+ 1 H^n+1, its Gauss map
is defined with values in the space of oriented geodesics of H n+ 1 H^n+1, which is …

Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems

VV Trofimov, MV Shamolin - Journal of Mathematical Sciences, 2012 - Springer
This paper presents results concerning the geometric invariant theory of completely
integrable Hamiltonian systems and also the classification of integrable cases of low …

Examples of unstable Hamiltonian-minimal Lagrangian tori in

I Castro, F Urbano - Compositio Mathematica, 1998 - cambridge.org
A new family of Hamiltonian-minimal Lagrangian tori in the complex Euclidean plane is
constructed. They are the first known unstable ones and are characterized in terms of being …

[PDF][PDF] Mean curvature flow of monotone Lagrangian submanifolds

K Groh, M Schwarz, K Smoczyk, K Zehmisch - arxiv preprint math/0606428, 2006 - arxiv.org
arxiv:math/0606428v1 [math.DG] 18 Jun 2006 Page 1 arxiv:math/0606428v1 [math.DG] 18
Jun 2006 MEAN CURVATURE FLOW OF MONOTONE LAGRANGIAN SUBMANIFOLDS K …

Deformations of isotropic submanifolds in Kähler manifolds

BY Chen, JM Morvan - Journal of Geometry and Physics, 1994 - Elsevier
We study the first and second variations of isotropic submanifolds which preserve the
isotropy. In order to do so, we introduce the notions of harmonic, exact and isotropic …

A note on mean curvature, Maslov class and symplectic area of Lagrangian immersions

K Cieliebak, E Goldstein - 2004 - projecteuclid.org
In this note we prove a simple relation between the mean curvature form, symplectic area,
and the Maslov class of a Lagrangian immersion in a Kähler-Einstein manifold. An …