Dynamics of quantum systems embedded in a continuum
J Okołowicz, M Płoszajczak, I Rotter - Physics Reports, 2003 - Elsevier
The relevance of the open quantum system formalism for the description of weakly bound
nuclei far from the valley of stability, small droplets of neutral atoms, gas of trapped atoms …
nuclei far from the valley of stability, small droplets of neutral atoms, gas of trapped atoms …
Random matrices close to Hermitian or unitary: overview of methods and results
YV Fyodorov, HJ Sommers - Journal of Physics A: Mathematical …, 2003 - iopscience.iop.org
The paper discusses recent progress in understanding statistical properties of eigenvalues
of (weakly) non-Hermitian and non-unitary random matrices. The first type of ensembles is of …
of (weakly) non-Hermitian and non-unitary random matrices. The first type of ensembles is of …
Symmetry classification of many-body Lindbladians: Tenfold way and beyond
We perform a systematic symmetry classification of many-body Lindblad superoperators
describing general (interacting) open quantum systems coupled to a Markovian …
describing general (interacting) open quantum systems coupled to a Markovian …
Universal spectra of random Lindblad operators
To understand the typical dynamics of an open quantum system in continuous time, we
introduce an ensemble of random Lindblad operators, which generate completely positive …
introduce an ensemble of random Lindblad operators, which generate completely positive …
On statistics of bi-orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry
YV Fyodorov - Communications in Mathematical Physics, 2018 - Springer
We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the
associated 'non-orthogonality overlap factor'(also known as the 'eigenvalue condition …
associated 'non-orthogonality overlap factor'(also known as the 'eigenvalue condition …
Random generators of Markovian evolution: A quantum-classical transition by superdecoherence
Continuous-time Markovian evolution appears to be manifestly different in classical and
quantum worlds. We consider ensembles of random generators of N-dimensional Markovian …
quantum worlds. We consider ensembles of random generators of N-dimensional Markovian …
The distribution of overlaps between eigenvectors of Ginibre matrices
P Bourgade, G Dubach - Probability Theory and Related Fields, 2020 - Springer
We study the overlaps between eigenvectors of nonnormal matrices. They quantify the
stability of the spectrum, and characterize the joint eigenvalues increments under Dyson …
stability of the spectrum, and characterize the joint eigenvalues increments under Dyson …
Spectral theory of sparse non-Hermitian random matrices
Sparse non-Hermitian random matrices arise in the study of disordered physical systems
with asymmetric local interactions, and have applications ranging from neural networks to …
with asymmetric local interactions, and have applications ranging from neural networks to …
Mean left-right eigenvector self-overlap in the real Ginibre ensemble
We study analytically the Chalker-Mehlig mean diagonal overlap $\mathcal {O}(z) $ between
left and right eigenvectors associated with a complex eigenvalue $ z $ of $ N\times N …
left and right eigenvectors associated with a complex eigenvalue $ z $ of $ N\times N …
Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles
Statistical properties of eigenvectors in non-Hermitian random matrix ensembles are
discussed, with an emphasis on correlations between left and right eigenvectors. Two …
discussed, with an emphasis on correlations between left and right eigenvectors. Two …