Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Evaluating recommender systems: survey and framework
The comprehensive evaluation of the performance of a recommender system is a complex
endeavor: many facets need to be considered in configuring an adequate and effective …
endeavor: many facets need to be considered in configuring an adequate and effective …
Bias and debias in recommender system: A survey and future directions
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …
system (RS), most of the papers focus on inventing machine learning models to better fit …
Reinforcement learning based recommender systems: A survey
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …
help us find our favorite items to purchase, our friends on social networks, and our favorite …
Conservative q-learning for offline reinforcement learning
Effectively leveraging large, previously collected datasets in reinforcement learn-ing (RL) is
a key challenge for large-scale real-world applications. Offline RL algorithms promise to …
a key challenge for large-scale real-world applications. Offline RL algorithms promise to …
Offline reinforcement learning: Tutorial, review, and perspectives on open problems
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get
started on research on offline reinforcement learning algorithms: reinforcement learning …
started on research on offline reinforcement learning algorithms: reinforcement learning …
[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …
research and several fruitful results in recent years, this survey aims to provide a timely and …
Deep reinforcement learning in computer vision: a comprehensive survey
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …
the powerful representation of deep neural networks. Recent works have demonstrated the …
Mind: A large-scale dataset for news recommendation
News recommendation is an important technique for personalized news service. Compared
with product and movie recommendations which have been comprehensively studied, the …
with product and movie recommendations which have been comprehensively studied, the …
[HTML][HTML] Advances and challenges in conversational recommender systems: A survey
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …
heavily used in a wide range of industry applications. However, static recommendation …