Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature Computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Noisy intermediate-scale quantum algorithms

K Bharti, A Cervera-Lierta, TH Kyaw, T Haug… - Reviews of Modern …, 2022 - APS
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

Connecting ansatz expressibility to gradient magnitudes and barren plateaus

Z Holmes, K Sharma, M Cerezo, PJ Coles - PRX Quantum, 2022 - APS
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …

Noise-induced barren plateaus in variational quantum algorithms

S Wang, E Fontana, M Cerezo, K Sharma… - Nature …, 2021 - nature.com
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …

Cost function dependent barren plateaus in shallow parametrized quantum circuits

M Cerezo, A Sone, T Volkoff, L Cincio… - Nature communications, 2021 - nature.com
Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized
quantum circuit V (θ) to minimize a cost function C. While VQAs may enable practical …

Absence of barren plateaus in quantum convolutional neural networks

A Pesah, M Cerezo, S Wang, T Volkoff, AT Sornborger… - Physical Review X, 2021 - APS
Quantum neural networks (QNNs) have generated excitement around the possibility of
efficiently analyzing quantum data. But this excitement has been tempered by the existence …

Quantum computing for high-energy physics: State of the art and challenges

A Di Meglio, K Jansen, I Tavernelli, C Alexandrou… - PRX Quantum, 2024 - APS
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …

Diagnosing barren plateaus with tools from quantum optimal control

M Larocca, P Czarnik, K Sharma, G Muraleedharan… - Quantum, 2022 - quantum-journal.org
Abstract Variational Quantum Algorithms (VQAs) have received considerable attention due
to their potential for achieving near-term quantum advantage. However, more work is …