Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
Interpretable machine learning for knowledge generation in heterogeneous catalysis
Most applications of machine learning in heterogeneous catalysis thus far have used black-
box models to predict computable physical properties (descriptors), such as adsorption or …
box models to predict computable physical properties (descriptors), such as adsorption or …
Open catalyst 2020 (OC20) dataset and community challenges
Catalyst discovery and optimization is key to solving many societal and energy challenges
including solar fuel synthesis, long-term energy storage, and renewable fertilizer production …
including solar fuel synthesis, long-term energy storage, and renewable fertilizer production …
Single-atom alloy catalysis
Single-atom alloys (SAAs) play an increasingly significant role in the field of single-site
catalysis and are typically composed of catalytically active elements atomically dispersed in …
catalysis and are typically composed of catalytically active elements atomically dispersed in …
Bridging the complexity gap in computational heterogeneous catalysis with machine learning
Heterogeneous catalysis underpins a wide variety of industrial processes including energy
conversion, chemical manufacturing and environmental remediation. Significant advances …
conversion, chemical manufacturing and environmental remediation. Significant advances …
Big-data science in porous materials: materials genomics and machine learning
By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …
possible metal–organic frameworks (MOFs). The fact that we have so many materials opens …
Machine learning for catalysis informatics: recent applications and prospects
The discovery and development of catalysts and catalytic processes are essential
components to maintaining an ecological balance in the future. Recent revolutions made in …
components to maintaining an ecological balance in the future. Recent revolutions made in …
Activity and Selectivity Roadmap for C–N Electro-Coupling on MXenes
Electrochemical coupling between carbon and nitrogen species to generate high-value C–N
products, including urea, presents significant economic and environmental potentials for …
products, including urea, presents significant economic and environmental potentials for …
Human-and machine-centred designs of molecules and materials for sustainability and decarbonization
Breakthroughs in molecular and materials discovery require meaningful outliers to be
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …
identified in existing trends. As knowledge accumulates, the inherent bias of human intuition …
Emerging materials intelligence ecosystems propelled by machine learning
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …
successes and promises, several AI ecosystems are blossoming, many of them within the …