Deep reinforcement learning in computer vision: a comprehensive survey

N Le, VS Rathour, K Yamazaki, K Luu… - Artificial Intelligence …, 2022 - Springer
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …

Deep learning in multi-object detection and tracking: state of the art

SK Pal, A Pramanik, J Maiti, P Mitra - Applied Intelligence, 2021 - Springer
Object detection and tracking is one of the most important and challenging branches in
computer vision, and have been widely applied in various fields, such as health-care …

Trackformer: Multi-object tracking with transformers

T Meinhardt, A Kirillov, L Leal-Taixe… - Proceedings of the …, 2022 - openaccess.thecvf.com
The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about
track initialization, identity, and spatio-temporal trajectories. We formulate this task as a …

Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey

X Wu, W Li, D Hong, R Tao, Q Du - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Owing to effective and flexible data acquisition, unmanned aerial vehicles (UAVs) have
recently become a hotspot across the fields of computer vision (CV) and remote sensing …

Towards real-time multi-object tracking

Z Wang, L Zheng, Y Liu, Y Li, S Wang - European conference on computer …, 2020 - Springer
Modern multiple object tracking (MOT) systems usually follow the tracking-by-detection
paradigm. It has 1) a detection model for target localization and 2) an appearance …

Transmot: Spatial-temporal graph transformer for multiple object tracking

P Chu, J Wang, Q You, H Ling… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Tracking multiple objects in videos relies on modeling the spatial-temporal interactions of
the objects. In this paper, we propose TransMOT, which leverages powerful graph …

Deep learning in video multi-object tracking: A survey

G Ciaparrone, FL Sánchez, S Tabik, L Troiano… - Neurocomputing, 2020 - Elsevier
Abstract The problem of Multiple Object Tracking (MOT) consists in following the trajectory of
different objects in a sequence, usually a video. In recent years, with the rise of Deep …

Tracking without bells and whistles

P Bergmann, T Meinhardt… - Proceedings of the …, 2019 - openaccess.thecvf.com
The problem of tracking multiple objects in a video sequence poses several challenging
tasks. For tracking-by-detection, these include object re-identification, motion prediction and …

Learning a neural solver for multiple object tracking

G Brasó, L Leal-Taixé - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
Graphs offer a natural way to formulate Multiple Object Tracking (MOT) within the tracking-by-
detection paradigm. However, they also introduce a major challenge for learning methods …

Detection and tracking meet drones challenge

P Zhu, L Wen, D Du, X Bian, H Fan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Drones, or general UAVs, equipped with cameras have been fast deployed with a wide
range of applications, including agriculture, aerial photography, and surveillance …