Federated learning for connected and automated vehicles: A survey of existing approaches and challenges

VP Chellapandi, L Yuan, CG Brinton… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles
(CAV), including perception, planning, and control. However, its reliance on vehicular data …

High-definition maps: Comprehensive survey, challenges, and future perspectives

G Elghazaly, R Frank, S Harvey… - IEEE Open Journal of …, 2023 - ieeexplore.ieee.org
In cooperative, connected, and automated mobility (CCAM), the more automated vehicles
can perceive, model, and analyze the surrounding environment, the more they become …

Prediction-uncertainty-aware decision-making for autonomous vehicles

X Tang, K Yang, H Wang, J Wu, Y Qin… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Motion prediction is the fundamental input for decision-making in autonomous vehicles. The
current motion prediction solutions are designed with a strong reliance on black box …

A systematic survey of control techniques and applications in connected and automated vehicles

W Liu, M Hua, Z Deng, Z Meng, Y Huang… - IEEE Internet of …, 2023 - ieeexplore.ieee.org
Vehicle control is one of the most critical challenges in autonomous vehicles (AVs) and
connected and automated vehicles (CAVs), and it is paramount in vehicle safety, passenger …

Forecast-mae: Self-supervised pre-training for motion forecasting with masked autoencoders

J Cheng, X Mei, M Liu - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
This study explores the application of self-supervised learning (SSL) to the task of motion
forecasting, an area that has not yet been extensively investigated despite the widespread …

HiVeGPT: Human-machine-augmented intelligent vehicles with generative pre-trained transformer

J Zhang, J Pu, J Xue, M Yang, X Xu… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Recently, a chat generative pre-trained transformer (ChatGPT) attracts widespread attention
in the academies and industries because of its powerful conversational ability with human …

Bat: Behavior-aware human-like trajectory prediction for autonomous driving

H Liao, Z Li, H Shen, W Zeng, D Liao, G Li… - Proceedings of the AAAI …, 2024 - ojs.aaai.org
The ability to accurately predict the trajectory of surrounding vehicles is a critical hurdle to
overcome on the journey to fully autonomous vehicles. To address this challenge, we …

Event-triggered deep reinforcement learning using parallel control: A case study in autonomous driving

J Lu, L Han, Q Wei, X Wang, X Dai… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
This paper utilizes parallel control to investigate the problem of event-triggered deep
reinforcement learning and develops an event-triggered deep Q-network (ETDQN) for …

Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

V Bharilya, N Kumar - Vehicular Communications, 2024 - Elsevier
The significant contribution of human errors, accounting for approximately 94%(with a
margin of±2.2%), to road crashes leading to casualties, vehicle damages, and safety …

Verification and validation methods for decision-making and planning of automated vehicles: A review

Y Ma, C Sun, J Chen, D Cao… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Verification and validation (V&V) hold a significant position in the research and development
of automated vehicles (AVs). Current literature indicates that different V&V techniques have …