[HTML][HTML] Augmentation-aware self-supervised learning with conditioned projector

M Przewięźlikowski, M Pyla, B Zieliński… - Knowledge-Based …, 2024 - Elsevier
Self-supervised learning (SSL) is a powerful technique for learning from unlabeled data. By
learning to remain invariant to applied data augmentations, methods such as SimCLR and …

Augmenting KG Hierarchies Using Neural Transformers

S Sharma, M Poddar, J Kumar, K Blank… - European Conference on …, 2024 - Springer
This work leverages neural transformers to generate hierarchies in an existing knowledge
graph. For small (< 10,000 node) domain-specific KGs, we find that a combination of few …

[HTML][HTML] Orthrus: Towards Evolutionary and Functional RNA Foundation Models

P Fradkin, R Shi, K Isaev, BJ Frey, Q Morris, LJ Lee… - …, 2024 - pmc.ncbi.nlm.nih.gov
In the face of rapidly accumulating genomic data, our ability to accurately predict key mature
RNA properties that underlie transcript function and regulation remains limited. Pre-trained …

QUITO: Accelerating Long-Context Reasoning through Query-Guided Context Compression

W Wang, Y Wang, Y Fan, H Liao, J Guo - China Conference on …, 2024 - Springer
In-context learning (ICL) capabilities are foundational to the success of large language
models (LLMs). Recently, context compression has attracted growing interest since it can …

ALE: a simulation-based active learning evaluation framework for the parameter-driven comparison of query strategies for NLP

P Kohl, N Freyer, Y Krämer, H Werth, S Wolf… - … Conference on Deep …, 2023 - Springer
Supervised machine learning and deep learning require a large amount of labeled data,
which data scientists obtain in a manual, and time-consuming annotation process. To …

An overview of few-shot learning methods in analysis of histopathological images

J Szołomicka, U Markowska-Kaczmar - Advances in Smart Healthcare …, 2023 - Springer
Abstract Analysis of histopathological images allows doctors to diagnose diseases like
cancer, which is the cause of nearly one in six deaths worldwide. Classification of such …

Multimodal data fusion (mdf) for tabular and textual data: A zero-shot, few-shots, and fine-tuning of gpt models

S Jaradat, M Elhenawy, R Nayak, A Paz… - Few-Shots, and Fine … - papers.ssrn.com
In traffic safety analysis, previous research has often focused on tabular data or textual crash
narratives in isolation, neglecting the potential benefits of a hybrid multimodal approach …

[PDF][PDF] Обучение нейронных сетей на новых доменах и малых выборках в задаче определения группы крови

ПМ Пищев, ДА Шарапов, СА Корчагин… - Информационные …, 2024 - jip.ru
Современные алгоритмы глубокого обучения позволяют достичь высоких результатов
предсказания в различных задачах классификации изображений. Как правило, для …

Philipp Kohl, Nils Freyer¹, Yoka Krämer¹, Henri Werth³, Steffen Wolf, Bodo Kraft, Matthias Meinecke¹, and Albert Zündorf² 1 FH Aachen-University of Applied Sciences …

S Wolf - Deep Learning Theory and Applications: 4th …, 2023 - books.google.com
Supervised machine learning and deep learning require a large amount of labeled data,
which data scientists obtain in a manual, and time-consuming annotation process. To …

Towards Frugal Artificial Intelligence: Exploring Neural Network Pruning and Binarization

A Klimczak, M Wenka, M Ganzha, M Paprzycki… - … on Intelligent Informatics, 2022 - Springer
Recently, it has been stipulated that training larger and larger models, using ever increasing
datasets is not sustainable in a long-run. Hence, the idea of Frugal Artificial Intelligence has …