A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Class-incremental learning: A survey
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
in many vision tasks in the closed world. However, novel classes emerge from time to time in …
Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes
continually from limited samples without forgetting the old classes. The mainstream …
continually from limited samples without forgetting the old classes. The mainstream …
Heterogeneous forgetting compensation for class-incremental learning
Class-incremental learning (CIL) has achieved remarkable successes in learning new
classes consecutively while overcoming catastrophic forgetting on old categories. However …
classes consecutively while overcoming catastrophic forgetting on old categories. However …
Expandable subspace ensemble for pre-trained model-based class-incremental learning
Abstract Class-Incremental Learning (CIL) requires a learning system to continually learn
new classes without forgetting. Despite the strong performance of Pre-Trained Models …
new classes without forgetting. Despite the strong performance of Pre-Trained Models …
When prompt-based incremental learning does not meet strong pretraining
Incremental learning aims to overcome catastrophic forgetting when learning deep networks
from sequential tasks. With impressive learning efficiency and performance, prompt-based …
from sequential tasks. With impressive learning efficiency and performance, prompt-based …
Catastrophic forgetting in deep learning: A comprehensive taxonomy
Deep Learning models have achieved remarkable performance in tasks such as image
classification or generation, often surpassing human accuracy. However, they can struggle …
classification or generation, often surpassing human accuracy. However, they can struggle …
Learning without forgetting for vision-language models
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real
world, which requires a learning system to adapt to new tasks without forgetting former ones …
world, which requires a learning system to adapt to new tasks without forgetting former ones …