[PDF][PDF] Deep unsupervised domain adaptation: A review of recent advances and perspectives

X Liu, C Yoo, F **ng, H Oh, G El Fakhri… - … on Signal and …, 2022 - nowpublishers.com
Deep learning has become the method of choice to tackle real-world problems in different
domains, partly because of its ability to learn from data and achieve impressive performance …

Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T **ang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …

MIC: Masked image consistency for context-enhanced domain adaptation

L Hoyer, D Dai, H Wang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …

Contrastive test-time adaptation

D Chen, D Wang, T Darrell… - Proceedings of the …, 2022 - openaccess.thecvf.com
Test-time adaptation is a special setting of unsupervised domain adaptation where a trained
model on the source domain has to adapt to the target domain without accessing source …

Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion

H Tao, J Qiu, Y Chen, V Stojanovic, L Cheng - Journal of the Franklin …, 2023 - Elsevier
In recent years, data-driven methods have been widely used in rolling bearing fault
diagnosis with great success, which mainly relies on the same data distribution and massive …

Clothes-changing person re-identification with rgb modality only

X Gu, H Chang, B Ma, S Bai… - Proceedings of the …, 2022 - openaccess.thecvf.com
The key to address clothes-changing person re-identification (re-id) is to extract clothes-
irrelevant features, eg, face, hairstyle, body shape, and gait. Most current works mainly focus …

Generalized source-free domain adaptation

S Yang, Y Wang, J Van De Weijer… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Domain adaptation (DA) aims to transfer the knowledge learned from source
domain to an unlabeled target domain. Some recent works tackle source-free domain …

Adaptive adversarial network for source-free domain adaptation

H **a, H Zhao, Z Ding - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation solves knowledge transfer along with the
coexistence of well-annotated source domain and unlabeled target instances. However, the …

Learning to diversify for single domain generalization

Z Wang, Y Luo, R Qiu, Z Huang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Domain generalization (DG) aims to generalize a model trained on multiple source
(ie, training) domains to a distributionally different target (ie, test) domain. In contrast to the …

Cdtrans: Cross-domain transformer for unsupervised domain adaptation

T Xu, W Chen, P Wang, F Wang, H Li, R ** - arxiv preprint arxiv …, 2021 - arxiv.org
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled
source domain to a different unlabeled target domain. Most existing UDA methods focus on …