Cross-scene target detection based on feature adaptation and uncertainty-aware pseudo-label learning for high resolution SAR images

B Zou, J Qin, L Zhang - ISPRS Journal of Photogrammetry and Remote …, 2023 - Elsevier
The characteristics of synthetic aperture radar (SAR) images are easily affected by factors
such as sensor parameters, imaging scenes, etc., which may lead to data distributional …

[HTML][HTML] Detection of floating garbage on water surface based on PC-Net

N Li, H Huang, X Wang, B Yuan, Y Liu, S Xu - Sustainability, 2022 - mdpi.com
In the detection of surface floating garbage, the existence of complex backgrounds and the
small target sizes make the surface floating garbage easy to mis-detect. Existing approaches …

Unsupervised ship detection in SAR images using superpixels and CSPNet

L Zhang, J Cheng, J Liu, T Liu… - IEEE Geoscience and …, 2023 - ieeexplore.ieee.org
Ship detection in synthetic aperture radar (SAR) images is critical to ocean surveillance and
rescue. Although many deep learning SAR ship detection methods have been proposed, the …

An efficient center-based method with multilevel auxiliary supervision for multiscale SAR ship detection

Y Zhang, X Wang, Z Jiang, G Li… - IEEE Journal of Selected …, 2022 - ieeexplore.ieee.org
The problem of multiscale ship detection in synthetic aperture radar (SAR) images has
received much attention with the development of deep convolutional neural networks …

Federated target recognition for multiradar sensor data security

Y Song, G Dong - IEEE Transactions on Geoscience and …, 2023 - ieeexplore.ieee.org
A single sensor radar can no longer satisfy the increasingly complex electromagnetic
environment. More attention is paid to radar sensor networks, which can obtain more …

Anomaly-based ship detection using SP feature-space learning with false-alarm control in sea-surface SAR images

X Pan, N Li, L Yang, Z Huang, J Chen, Z Wu, G Zheng - Remote Sensing, 2023 - mdpi.com
Synthetic aperture radar (SAR) can provide high-resolution and large-scale maritime
monitoring, which is beneficial to ship detection. However, ship-detection performance is …

RDB-DINO: An Improved End-to-End Transformer With Refined De-Noising and Boxes for Small-Scale Ship Detection in SAR Images

C Qin, L Zhang, X Wang, G Li, Y He… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Recently, convolution neural networks (CNNs) have been extensively utilized in synthetic
aperture radar (SAR) ship detection owing to their strong feature extraction and …

A Modified YOLOV5 Model Combined With LBP Features for Target Detection In Sar Images

T Li, Y Wang, D Peng, J Yang - IGARSS 2024-2024 IEEE …, 2024 - ieeexplore.ieee.org
To improve target detection performance in SAR images, the YOLOV5 network is modified at
four different parts, including the input, backbone, neck, and head modules. At the input end …

Радиолокация сложных целей. Обнаружение и распознавание

ЛГ Доросинский, НС Виноградова - 2024 - elar.urfu.ru
Книга посвящена решению теоретических и практических проблем обнаружения,
измерения параметров и классификации пространственно-распределённых целей …

Современное состояние проблемы распознавания радиолокационных изображений надводных кораблей средствами космического мониторинга

LG Dorosinskiy, NS Vinogradova - URAL RADIO ENGINEERING …, 2024 - journals.urfu.ru
Аннотация Проблема синтеза и анализа алгоритмов обработки радиолокационных
изображений пространственно-распределенных целей, полученных средствами …