Graph representation learning in biomedicine and healthcare
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …
biomedicine and healthcare, they can represent, for example, molecular interactions …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
A survey on deep learning and its applications
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Message passing neural networks have become a method of choice for learning on graphs,
in particular the prediction of chemical properties and the acceleration of molecular …
in particular the prediction of chemical properties and the acceleration of molecular …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
[HTML][HTML] A gentle introduction to graph neural networks
A Gentle Introduction to Graph Neural Networks Distill About Prize Submit A Gentle Introduction
to Graph Neural Networks Neural networks have been adapted to leverage the structure and …
to Graph Neural Networks Neural networks have been adapted to leverage the structure and …
Self-supervised graph transformer on large-scale molecular data
How to obtain informative representations of molecules is a crucial prerequisite in AI-driven
drug design and discovery. Recent researches abstract molecules as graphs and employ …
drug design and discovery. Recent researches abstract molecules as graphs and employ …
Drug discovery with explainable artificial intelligence
Deep learning bears promise for drug discovery, including advanced image analysis,
prediction of molecular structure and function, and automated generation of innovative …
prediction of molecular structure and function, and automated generation of innovative …