NISQ computing: where are we and where do we go?

JWZ Lau, KH Lim, H Shrotriya, LC Kwek - AAPPS bulletin, 2022 - Springer
In this short review article, we aim to provide physicists not working within the quantum
computing community a hopefully easy-to-read introduction to the state of the art in the field …

Machine learning & artificial intelligence in the quantum domain: a review of recent progress

V Dunjko, HJ Briegel - Reports on Progress in Physics, 2018 - iopscience.iop.org
Quantum information technologies, on the one hand, and intelligent learning systems, on the
other, are both emergent technologies that are likely to have a transformative impact on our …

Is quantum advantage the right goal for quantum machine learning?

M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …

Training deep quantum neural networks

K Beer, D Bondarenko, T Farrelly, TJ Osborne… - Nature …, 2020 - nature.com
Neural networks enjoy widespread success in both research and industry and, with the
advent of quantum technology, it is a crucial challenge to design quantum neural networks …

Quantum machine learning

J Biamonte, P Wittek, N Pancotti, P Rebentrost… - Nature, 2017 - nature.com
Fuelled by increasing computer power and algorithmic advances, machine learning
techniques have become powerful tools for finding patterns in data. Quantum systems …

An introduction to quantum machine learning

M Schuld, I Sinayskiy, F Petruccione - Contemporary Physics, 2015 - Taylor & Francis
Machine learning algorithms learn a desired input-output relation from examples in order to
interpret new inputs. This is important for tasks such as image and speech recognition or …

[BUCH][B] Quantum machine learning: what quantum computing means to data mining

P Wittek - 2014 - books.google.com
Quantum Machine Learning bridges the gap between abstract developments in quantum
computing and the applied research on machine learning. Paring down the complexity of the …

Machine learning algorithms in quantum computing: A survey

SB Ramezani, A Sommers… - … joint conference on …, 2020 - ieeexplore.ieee.org
Machine Learning (ML) aims at designing models that learn from previous experience,
without being explicitly formulated. Applications of machine learning are inexhaustible …

NISQ computers: a path to quantum supremacy

M AbuGhanem, H Eleuch - IEEE Access, 2024 - ieeexplore.ieee.org
The quest for quantum advantage, wherein quantum computers surpass the computational
capabilities of classical computers executing state-of-the-art algorithms on well-defined …

Quantum machine learning for quantum anomaly detection

N Liu, P Rebentrost - Physical Review A, 2018 - APS
Anomaly detection is used for identifying data that deviate from “normal” data patterns. Its
usage on classical data finds diverse applications in many important areas such as finance …