Spectral–spatial weighted sparse regression for hyperspectral image unmixing

S Zhang, J Li, HC Li, C Deng… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Spectral unmixing aims at estimating the fractional abundances of a set of pure spectral
materials (endmembers) in each pixel of a hyperspectral image. The wide availability of …

[PDF][PDF] **高光谱遥感的前沿进展

童庆禧, 张兵, 张立福 - 遥感学报, 2016 - ygxb.ac.cn
高光谱成像技术具有光谱分辨率高, 图谱合一的独特优势, 是遥感技术发展以来最重大的科技
突破之一. **的高光谱遥感发展与国际基本同步, 在国家和省部级科研项目的支持下 …

Weighted nonlocal low-rank tensor decomposition method for sparse unmixing of hyperspectral images

L Sun, F Wu, T Zhan, W Liu, J Wang… - IEEE Journal of …, 2020 - ieeexplore.ieee.org
The low spatial resolution of hyperspectral images leads to the coexistence of multiple
ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a …

Spectral-spatial hyperspectral unmixing using nonnegative matrix factorization

S Zhang, G Zhang, F Li, C Deng… - … on Geoscience and …, 2021 - ieeexplore.ieee.org
Remotely sensed hyperspectral images contain several bands (at about adjoining
frequencies) for a similar zone on the surface of the Earth. Hyperspectral unmixing is a …

Spectral–spatial joint sparse NMF for hyperspectral unmixing

L Dong, Y Yuan, X Luxs - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
The nonnegative matrix factorization (NMF) combining with spatial-spectral contextual
information is an important technique for extracting endmembers and abundances of …

SUnCNN: Sparse unmixing using unsupervised convolutional neural network

B Rasti, B Koirala - IEEE Geoscience and Remote Sensing …, 2021 - ieeexplore.ieee.org
In this letter, we propose a sparse unmixing technique using a convolutional neural network
(SUnCNN) for hyperspectral images. SUnCNN is the first deep learning-based technique …

Multiview spatial–spectral two-stream network for hyperspectral image unmixing

L Qi, Z Chen, F Gao, J Dong, X Gao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Linear spectral unmixing is an important technique in the analysis of mixed pixels in
hyperspectral images. In recent years, deep learning-based methods have been garnering …

Spectral–spatial-weighted multiview collaborative sparse unmixing for hyperspectral images

L Qi, J Li, Y Wang, Y Huang… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Spectral unmixing is an important task in hyperspectral image (HSI) analysis and
processing. Sparse representation has become a promising semisupervised method for …

Superpixel-based graph Laplacian regularization for sparse hyperspectral unmixing

T Ince - IEEE Geoscience and Remote Sensing Letters, 2020 - ieeexplore.ieee.org
An efficient spatial regularization method using superpixel segmentation and graph
Laplacian regularization is proposed for the sparse hyperspectral unmixing method. Since it …

Hybrid-hypergraph regularized multiview subspace clustering for hyperspectral images

S Huang, H Zhang, A Pižurica - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Clustering algorithms play an essential and unique role in classification tasks, especially
when annotated data are unavailable or very scarce. Current clustering approaches in …