A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines

K Choi, J Yi, C Park, S Yoon - IEEE access, 2021 - ieeexplore.ieee.org
As industries become automated and connectivity technologies advance, a wide range of
systems continues to generate massive amounts of data. Many approaches have been …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A comprehensive survey on graph anomaly detection with deep learning

X Ma, J Wu, S Xue, J Yang, C Zhou… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Anomalies are rare observations (eg, data records or events) that deviate significantly from
the others in the sample. Over the past few decades, research on anomaly mining has …

A survey on graph neural networks for intrusion detection systems: methods, trends and challenges

M Zhong, M Lin, C Zhang, Z Xu - Computers & Security, 2024 - Elsevier
Intrusion detection systems (IDS) play a crucial role in maintaining network security. With the
increasing sophistication of cyber attack methods, traditional detection approaches are …

A survey on anomaly detection for technical systems using LSTM networks

B Lindemann, B Maschler, N Sahlab, M Weyrich - Computers in Industry, 2021 - Elsevier
Anomalies represent deviations from the intended system operation and can lead to
decreased efficiency as well as partial or complete system failure. As the causes of …

Graph neural networks for anomaly detection in industrial Internet of Things

Y Wu, HN Dai, H Tang - IEEE Internet of Things Journal, 2021 - ieeexplore.ieee.org
The Industrial Internet of Things (IIoT) plays an important role in digital transformation of
traditional industries toward Industry 4.0. By connecting sensors, instruments, and other …

Gadbench: Revisiting and benchmarking supervised graph anomaly detection

J Tang, F Hua, Z Gao, P Zhao… - Advances in Neural …, 2023 - proceedings.neurips.cc
With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …

Bond: Benchmarking unsupervised outlier node detection on static attributed graphs

K Liu, Y Dou, Y Zhao, X Ding, X Hu… - Advances in …, 2022 - proceedings.neurips.cc
Detecting which nodes in graphs are outliers is a relatively new machine learning task with
numerous applications. Despite the proliferation of algorithms developed in recent years for …

Dynamic network embedding survey

G Xue, M Zhong, J Li, J Chen, C Zhai, R Kong - Neurocomputing, 2022 - Elsevier
Since many real world networks are evolving over time, such as social networks and user-
item networks, there are increasing research efforts on dynamic network embedding in …