[HTML][HTML] A comprehensive survey of image augmentation techniques for deep learning

M Xu, S Yoon, A Fuentes, DS Park - Pattern Recognition, 2023 - Elsevier
Although deep learning has achieved satisfactory performance in computer vision, a large
volume of images is required. However, collecting images is often expensive and …

Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing

P Liu, W Yuan, J Fu, Z Jiang, H Hayashi… - ACM Computing …, 2023 - dl.acm.org
This article surveys and organizes research works in a new paradigm in natural language
processing, which we dub “prompt-based learning.” Unlike traditional supervised learning …

A survey of data augmentation approaches for NLP

SY Feng, V Gangal, J Wei, S Chandar… - arxiv preprint arxiv …, 2021 - arxiv.org
Data augmentation has recently seen increased interest in NLP due to more work in low-
resource domains, new tasks, and the popularity of large-scale neural networks that require …

A survey on data augmentation for text classification

M Bayer, MA Kaufhold, C Reuter - ACM Computing Surveys, 2022 - dl.acm.org
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …

Data collection and quality challenges in deep learning: A data-centric ai perspective

SE Whang, Y Roh, H Song, JG Lee - The VLDB Journal, 2023 - Springer
Data-centric AI is at the center of a fundamental shift in software engineering where machine
learning becomes the new software, powered by big data and computing infrastructure …

Deep stable learning for out-of-distribution generalization

X Zhang, P Cui, R Xu, L Zhou… - Proceedings of the …, 2021 - openaccess.thecvf.com
Approaches based on deep neural networks have achieved striking performance when
testing data and training data share similar distribution, but can significantly fail otherwise …

Time series data augmentation for deep learning: A survey

Q Wen, L Sun, F Yang, X Song, J Gao, X Wang… - arxiv preprint arxiv …, 2020 - arxiv.org
Deep learning performs remarkably well on many time series analysis tasks recently. The
superior performance of deep neural networks relies heavily on a large number of training …

Randaugment: Practical automated data augmentation with a reduced search space

ED Cubuk, B Zoph, J Shlens… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Recent work on automated augmentation strategies has led to state-of-the-art results in
image classification and object detection. An obstacle to a large-scale adoption of these …

Dataset condensation with differentiable siamese augmentation

B Zhao, H Bilen - International Conference on Machine …, 2021 - proceedings.mlr.press
In many machine learning problems, large-scale datasets have become the de-facto
standard to train state-of-the-art deep networks at the price of heavy computation load. In this …

A systematic review on data scarcity problem in deep learning: solution and applications

MA Bansal, DR Sharma, DM Kathuria - ACM Computing Surveys (Csur), 2022 - dl.acm.org
Recent advancements in deep learning architecture have increased its utility in real-life
applications. Deep learning models require a large amount of data to train the model. In …