Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

Bidirectional copy-paste for semi-supervised medical image segmentation

Y Bai, D Chen, Q Li, W Shen… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In semi-supervised medical image segmentation, there exist empirical mismatch problems
between labeled and unlabeled data distribution. The knowledge learned from the labeled …

Revisiting weak-to-strong consistency in semi-supervised semantic segmentation

L Yang, L Qi, L Feng, W Zhang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In this work, we revisit the weak-to-strong consistency framework, popularized by FixMatch
from semi-supervised classification, where the prediction of a weakly perturbed image …

Pseudo-label guided contrastive learning for semi-supervised medical image segmentation

H Basak, Z Yin - Proceedings of the IEEE/CVF conference …, 2023 - openaccess.thecvf.com
Although recent works in semi-supervised learning (SemiSL) have accomplished significant
success in natural image segmentation, the task of learning discriminative representations …

Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency

X Luo, G Wang, W Liao, J Chen, T Song, Y Chen… - Medical Image …, 2022 - Elsevier
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …

Ambiguity-selective consistency regularization for mean-teacher semi-supervised medical image segmentation

Z Xu, Y Wang, D Lu, X Luo, J Yan, Y Zheng… - Medical Image …, 2023 - Elsevier
Semi-supervised learning has greatly advanced medical image segmentation since it
effectively alleviates the need of acquiring abundant annotations from experts, wherein the …

Semi-supervised medical image segmentation via cross teaching between cnn and transformer

X Luo, M Hu, T Song, G Wang… - … conference on medical …, 2022 - proceedings.mlr.press
Recently, deep learning with Convolutional Neural Networks (CNNs) and Transformers has
shown encouraging results in fully supervised medical image segmentation. However, it is …