Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] RS-CLIP: Zero shot remote sensing scene classification via contrastive vision-language supervision
Zero-shot remote sensing scene classification aims to solve the scene classification problem
on unseen categories and has attracted numerous research attention in the remote sensing …
on unseen categories and has attracted numerous research attention in the remote sensing …
Vision-language models for vision tasks: A survey
Most visual recognition studies rely heavily on crowd-labelled data in deep neural networks
(DNNs) training, and they usually train a DNN for each single visual recognition task …
(DNNs) training, and they usually train a DNN for each single visual recognition task …
Self-regulating prompts: Foundational model adaptation without forgetting
Prompt learning has emerged as an efficient alternative for fine-tuning foundational models,
such as CLIP, for various downstream tasks. Conventionally trained using the task-specific …
such as CLIP, for various downstream tasks. Conventionally trained using the task-specific …
Maple: Multi-modal prompt learning
Pre-trained vision-language (VL) models such as CLIP have shown excellent generalization
ability to downstream tasks. However, they are sensitive to the choice of input text prompts …
ability to downstream tasks. However, they are sensitive to the choice of input text prompts …
Prompt, generate, then cache: Cascade of foundation models makes strong few-shot learners
Visual recognition in low-data regimes requires deep neural networks to learn generalized
representations from limited training samples. Recently, CLIP-based methods have shown …
representations from limited training samples. Recently, CLIP-based methods have shown …
Test-time prompt tuning for zero-shot generalization in vision-language models
Pre-trained vision-language models (eg, CLIP) have shown promising zero-shot
generalization in many downstream tasks with properly designed text prompts. Instead of …
generalization in many downstream tasks with properly designed text prompts. Instead of …
What does a platypus look like? generating customized prompts for zero-shot image classification
Open-vocabulary models are a promising new paradigm for image classification. Unlike
traditional classification models, open-vocabulary models classify among any arbitrary set of …
traditional classification models, open-vocabulary models classify among any arbitrary set of …
S-prompts learning with pre-trained transformers: An occam's razor for domain incremental learning
State-of-the-art deep neural networks are still struggling to address the catastrophic
forgetting problem in continual learning. In this paper, we propose one simple paradigm …
forgetting problem in continual learning. In this paper, we propose one simple paradigm …
A systematic survey of prompt engineering on vision-language foundation models
Prompt engineering is a technique that involves augmenting a large pre-trained model with
task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be …
task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be …
Diverse data augmentation with diffusions for effective test-time prompt tuning
Benefiting from prompt tuning, recent years have witnessed the promising performance of
pre-trained vision-language models, eg, CLIP, on versatile downstream tasks. In this paper …
pre-trained vision-language models, eg, CLIP, on versatile downstream tasks. In this paper …