Enhancing computational fluid dynamics with machine learning

R Vinuesa, SL Brunton - Nature Computational Science, 2022 - nature.com
Abstract Machine learning is rapidly becoming a core technology for scientific computing,
with numerous opportunities to advance the field of computational fluid dynamics. Here we …

Modern Koopman theory for dynamical systems

SL Brunton, M Budišić, E Kaiser, JN Kutz - arxiv preprint arxiv:2102.12086, 2021 - arxiv.org
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …

Digital twin: Values, challenges and enablers from a modeling perspective

A Rasheed, O San, T Kvamsdal - IEEE access, 2020 - ieeexplore.ieee.org
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …

Machine learning for fluid mechanics

SL Brunton, BR Noack… - Annual review of fluid …, 2020 - annualreviews.org
The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data
from experiments, field measurements, and large-scale simulations at multiple …

Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis

A Towne, OT Schmidt, T Colonius - Journal of Fluid Mechanics, 2018 - cambridge.org
We consider the frequency domain form of proper orthogonal decomposition (POD), called
spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space …

Promising directions of machine learning for partial differential equations

SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …

[BOOK][B] Uncertainty quantification: theory, implementation, and applications

RC Smith - 2024 - SIAM
Uncertainty quantification serves a central role for simulation-based analysis of physical,
engineering, and biological applications using mechanistic models. From a broad …

Guide to spectral proper orthogonal decomposition

OT Schmidt, T Colonius - Aiaa journal, 2020 - arc.aiaa.org
This paper discusses the spectral proper orthogonal decomposition and its use in identifying
modes, or structures, in flow data. A specific algorithm based on estimating the cross …

Modal analysis of fluid flows: Applications and outlook

K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy… - AIAA journal, 2020 - arc.aiaa.org
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …

[HTML][HTML] Machine learning for combustion

L Zhou, Y Song, W Ji, H Wei - Energy and AI, 2022 - Elsevier
Combustion science is an interdisciplinary study that involves nonlinear physical and
chemical phenomena in time and length scales, including complex chemical reactions and …