Practical quantum advantage in quantum simulation
The development of quantum computing across several technologies and platforms has
reached the point of having an advantage over classical computers for an artificial problem …
reached the point of having an advantage over classical computers for an artificial problem …
Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
The theory of entanglement provides a fundamentally new language for describing
interactions and correlations in many-body systems. Its vocabulary consists of qubits and …
interactions and correlations in many-body systems. Its vocabulary consists of qubits and …
Evidence for the utility of quantum computing before fault tolerance
Quantum computing promises to offer substantial speed-ups over its classical counterpart for
certain problems. However, the greatest impediment to realizing its full potential is noise that …
certain problems. However, the greatest impediment to realizing its full potential is noise that …
Quantum optimization of maximum independent set using Rydberg atom arrays
Realizing quantum speedup for practically relevant, computationally hard problems is a
central challenge in quantum information science. Using Rydberg atom arrays with up to …
central challenge in quantum information science. Using Rydberg atom arrays with up to …
The ITensor software library for tensor network calculations
ITensor is a system for programming tensor network calculations with an interface modeled
on tensor diagram notation, which allows users to focus on the connectivity of a tensor …
on tensor diagram notation, which allows users to focus on the connectivity of a tensor …
Non-hermitian physics
A review is given on the foundations and applications of non-Hermitian classical and
quantum physics. First, key theorems and central concepts in non-Hermitian linear algebra …
quantum physics. First, key theorems and central concepts in non-Hermitian linear algebra …
Probing many-body dynamics on a 51-atom quantum simulator
Controllable, coherent many-body systems can provide insights into the fundamental
properties of quantum matter, enable the realization of new quantum phases and could …
properties of quantum matter, enable the realization of new quantum phases and could …
Quantum chemistry in the age of quantum computing
Practical challenges in simulating quantum systems on classical computers have been
widely recognized in the quantum physics and quantum chemistry communities over the …
widely recognized in the quantum physics and quantum chemistry communities over the …
The future of quantum computing with superconducting qubits
For the first time in history, we are seeing a branching point in computing paradigms with the
emergence of quantum processing units (QPUs). Extracting the full potential of computation …
emergence of quantum processing units (QPUs). Extracting the full potential of computation …
Solving the quantum many-body problem with artificial neural networks
The challenge posed by the many-body problem in quantum physics originates from the
difficulty of describing the nontrivial correlations encoded in the exponential complexity of …
difficulty of describing the nontrivial correlations encoded in the exponential complexity of …