Practical quantum advantage in quantum simulation

AJ Daley, I Bloch, C Kokail, S Flannigan, N Pearson… - Nature, 2022 - nature.com
The development of quantum computing across several technologies and platforms has
reached the point of having an advantage over classical computers for an artificial problem …

Matrix product states and projected entangled pair states: Concepts, symmetries, theorems

JI Cirac, D Perez-Garcia, N Schuch, F Verstraete - Reviews of Modern Physics, 2021 - APS
The theory of entanglement provides a fundamentally new language for describing
interactions and correlations in many-body systems. Its vocabulary consists of qubits and …

Evidence for the utility of quantum computing before fault tolerance

Y Kim, A Eddins, S Anand, KX Wei, E Van Den Berg… - Nature, 2023 - nature.com
Quantum computing promises to offer substantial speed-ups over its classical counterpart for
certain problems. However, the greatest impediment to realizing its full potential is noise that …

Quantum optimization of maximum independent set using Rydberg atom arrays

S Ebadi, A Keesling, M Cain, TT Wang, H Levine… - Science, 2022 - science.org
Realizing quantum speedup for practically relevant, computationally hard problems is a
central challenge in quantum information science. Using Rydberg atom arrays with up to …

The ITensor software library for tensor network calculations

M Fishman, S White, EM Stoudenmire - SciPost Physics Codebases, 2022 - scipost.org
ITensor is a system for programming tensor network calculations with an interface modeled
on tensor diagram notation, which allows users to focus on the connectivity of a tensor …

Non-hermitian physics

Y Ashida, Z Gong, M Ueda - Advances in Physics, 2020 - Taylor & Francis
A review is given on the foundations and applications of non-Hermitian classical and
quantum physics. First, key theorems and central concepts in non-Hermitian linear algebra …

Probing many-body dynamics on a 51-atom quantum simulator

H Bernien, S Schwartz, A Keesling, H Levine, A Omran… - Nature, 2017 - nature.com
Controllable, coherent many-body systems can provide insights into the fundamental
properties of quantum matter, enable the realization of new quantum phases and could …

Quantum chemistry in the age of quantum computing

Y Cao, J Romero, JP Olson, M Degroote… - Chemical …, 2019 - ACS Publications
Practical challenges in simulating quantum systems on classical computers have been
widely recognized in the quantum physics and quantum chemistry communities over the …

The future of quantum computing with superconducting qubits

S Bravyi, O Dial, JM Gambetta, D Gil… - Journal of Applied …, 2022 - pubs.aip.org
For the first time in history, we are seeing a branching point in computing paradigms with the
emergence of quantum processing units (QPUs). Extracting the full potential of computation …

Solving the quantum many-body problem with artificial neural networks

G Carleo, M Troyer - Science, 2017 - science.org
The challenge posed by the many-body problem in quantum physics originates from the
difficulty of describing the nontrivial correlations encoded in the exponential complexity of …