Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep learning modelling techniques: current progress, applications, advantages, and challenges
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
Artificial intelligence and machine learning in design of mechanical materials
Artificial intelligence, especially machine learning (ML) and deep learning (DL) algorithms,
is becoming an important tool in the fields of materials and mechanical engineering …
is becoming an important tool in the fields of materials and mechanical engineering …
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …
large amount of data to achieve exceptional performance. Unfortunately, many applications …
Analyses of internal structures and defects in materials using physics-informed neural networks
Characterizing internal structures and defects in materials is a challenging task, often
requiring solutions to inverse problems with unknown topology, geometry, material …
requiring solutions to inverse problems with unknown topology, geometry, material …
A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials
Failure trajectories, probable failure zones, and damage indices are some of the key
quantities of relevance in brittle fracture mechanics. High-fidelity numerical solvers that …
quantities of relevance in brittle fracture mechanics. High-fidelity numerical solvers that …
A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics
Despite its rapid development, Physics-Informed Neural Network (PINN)-based
computational solid mechanics is still in its infancy. In PINN, the loss function plays a critical …
computational solid mechanics is still in its infancy. In PINN, the loss function plays a critical …
Wavelet neural operator for solving parametric partial differential equations in computational mechanics problems
With massive advancements in sensor technologies and Internet-of-things (IoT), we now
have access to terabytes of historical data; however, there is a lack of clarity on how to best …
have access to terabytes of historical data; however, there is a lack of clarity on how to best …
Physics-informed deep neural operator networks
Standard neural networks can approximate general nonlinear operators, represented either
explicitly by a combination of mathematical operators, eg in an advection–diffusion reaction …
explicitly by a combination of mathematical operators, eg in an advection–diffusion reaction …
Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios
Recently, a class of machine learning methods called physics-informed neural networks
(PINNs) has been proposed and gained prevalence in solving various scientific computing …
(PINNs) has been proposed and gained prevalence in solving various scientific computing …
Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
In this paper, we introduce a new approach based on distance fields to exactly impose
boundary conditions in physics-informed deep neural networks. The challenges in satisfying …
boundary conditions in physics-informed deep neural networks. The challenges in satisfying …