AI4SeaIce: Toward solving ambiguous SAR textures in convolutional neural networks for automatic sea ice concentration charting

A Stokholm, T Wulf, A Kucik, R Saldo… - … on Geoscience and …, 2022 - ieeexplore.ieee.org
Automatically producing Arctic sea ice charts from Sentinel-1 synthetic aperture radar (SAR)
images is challenging for convolutional neural networks (CNNs) due to ambiguous …

The AutoICE Challenge

A Stokholm, J Buus-Hinkler, T Wulf, A Korosov… - The …, 2024 - tc.copernicus.org
Map** sea ice in the Arctic is essential for maritime navigation, and growing vessel traffic
highlights the necessity of the timeliness and accuracy of sea ice charts. In addition, with the …

AI4SeaIce: Task separation and multistage inference CNNs for automatic sea ice concentration charting

A Stokholm, A Kucik, N Longépé… - …, 2023 - egusphere.copernicus.org
We investigate how different Convolutional Neural Network (CNN) U-Net models
specialised in addressing partial labelling tasks related to map** Sea Ice Concentration …

AMD-HookNet for glacier front segmentation

F Wu, N Gourmelon, T Seehaus… - … on Geoscience and …, 2023 - ieeexplore.ieee.org
Knowledge on changes in glacier calving front positions is important for assessing the status
of glaciers. Remote sensing imagery provides the ideal database for monitoring calving front …

[PDF][PDF] Supervisors: dr. JN van Rijn (Leiden University) & prof. dr. HH Hoos (RWTH Aachen University, Leiden University) External Supervisor: A. Stokholm (Technical …

A Stokholm - theses.liacs.nl
To further automate the process of sea ice charting, convolutional neural networks can be
used. These networks take satellite images as input and convert them into charts showing …