[HTML][HTML] ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope

PP Ray - Internet of Things and Cyber-Physical Systems, 2023 - Elsevier
In recent years, artificial intelligence (AI) and machine learning have been transforming the
landscape of scientific research. Out of which, the chatbot technology has experienced …

Machine learning and deep learning—A review for ecologists

M Pichler, F Hartig - Methods in Ecology and Evolution, 2023 - Wiley Online Library
The popularity of machine learning (ML), deep learning (DL) and artificial intelligence (AI)
has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML …

Qlora: Efficient finetuning of quantized llms

T Dettmers, A Pagnoni, A Holtzman… - Advances in Neural …, 2024 - proceedings.neurips.cc
We present QLoRA, an efficient finetuning approach that reduces memory usage enough to
finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit …

Grounding dino: Marrying dino with grounded pre-training for open-set object detection

S Liu, Z Zeng, T Ren, F Li, H Zhang, J Yang… - … on Computer Vision, 2024 - Springer
In this paper, we develop an open-set object detector, called Grounding DINO, by marrying
Transformer-based detector DINO with grounded pre-training, which can detect arbitrary …

Pythia: A suite for analyzing large language models across training and scaling

S Biderman, H Schoelkopf… - International …, 2023 - proceedings.mlr.press
How do large language models (LLMs) develop and evolve over the course of training?
How do these patterns change as models scale? To answer these questions, we introduce …

Harnessing the power of llms in practice: A survey on chatgpt and beyond

J Yang, H **, R Tang, X Han, Q Feng, H Jiang… - ACM Transactions on …, 2024 - dl.acm.org
This article presents a comprehensive and practical guide for practitioners and end-users
working with Large Language Models (LLMs) in their downstream Natural Language …

Sparsegpt: Massive language models can be accurately pruned in one-shot

E Frantar, D Alistarh - International Conference on Machine …, 2023 - proceedings.mlr.press
We show for the first time that large-scale generative pretrained transformer (GPT) family
models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal …

Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale

T Dettmers, M Lewis, Y Belkada… - Advances in Neural …, 2022 - proceedings.neurips.cc
Large language models have been widely adopted but require significant GPU memory for
inference. We develop a procedure for Int8 matrix multiplication for feed-forward and …

Exploring the potential of large language models (llms) in learning on graphs

Z Chen, H Mao, H Li, W **, H Wen, X Wei… - ACM SIGKDD …, 2024 - dl.acm.org
Learning on Graphs has attracted immense attention due to its wide real-world applications.
The most popular pipeline for learning on graphs with textual node attributes primarily relies …