A review of feature selection methods for machine learning-based disease risk prediction

N Pudjihartono, T Fadason, AW Kempa-Liehr… - Frontiers in …, 2022 - frontiersin.org
Machine learning has shown utility in detecting patterns within large, unstructured, and
complex datasets. One of the promising applications of machine learning is in precision …

A complete process of text classification system using state‐of‐the‐art NLP models

V Dogra, S Verma, Kavita, P Chatterjee… - Computational …, 2022 - Wiley Online Library
With the rapid advancement of information technology, online information has been
exponentially growing day by day, especially in the form of text documents such as news …

[HTML][HTML] Benchmark for filter methods for feature selection in high-dimensional classification data

A Bommert, X Sun, B Bischl, J Rahnenführer… - … Statistics & Data Analysis, 2020 - Elsevier
Feature selection is one of the most fundamental problems in machine learning and has
drawn increasing attention due to high-dimensional data sets emerging from different fields …

[HTML][HTML] Ensemble machine learning approach for classification of IoT devices in smart home

I Cvitić, D Peraković, M Periša, B Gupta - International Journal of Machine …, 2021 - Springer
The emergence of the Internet of Things (IoT) concept as a new direction of technological
development raises new problems such as valid and timely identification of such devices …

Benchmark of filter methods for feature selection in high-dimensional gene expression survival data

A Bommert, T Welchowski, M Schmid… - Briefings in …, 2022 - academic.oup.com
Feature selection is crucial for the analysis of high-dimensional data, but benchmark studies
for data with a survival outcome are rare. We compare 14 filter methods for feature selection …

Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm

A Sarkar, SKS Hossain, R Sarkar - Neural Computing and Applications, 2023 - Springer
Capturing time and frequency relationships of time series signals offers an inherent barrier
for automatic human activity recognition (HAR) from wearable sensor data. Extracting …

Correlation feature selection based improved-binary particle swarm optimization for gene selection and cancer classification

I Jain, VK Jain, R Jain - Applied Soft Computing, 2018 - Elsevier
DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and
its classification. It provides better insights of many genetic mutations occurring within a cell …

Recent advances in feature selection and its applications

Y Li, T Li, H Liu - Knowledge and Information Systems, 2017 - Springer
Feature selection is one of the key problems for machine learning and data mining. In this
review paper, a brief historical background of the field is given, followed by a selection of …

[PDF][PDF] Feature selection for classification: A review

J Tang, S Alelyani, H Liu - Data classification: Algorithms and …, 2014 - math.chalmers.se
Nowadays, the growth of the high-throughput technologies has resulted in exponential
growth in the harvested data with respect to both dimensionality and sample size. The trend …

Approaches to multi-objective feature selection: a systematic literature review

Q Al-Tashi, SJ Abdulkadir, HM Rais, S Mirjalili… - IEEE …, 2020 - ieeexplore.ieee.org
Feature selection has gained much consideration from scholars working in the domain of
machine learning and data mining in recent years. Feature selection is a popular problem in …