Deep transfer learning for bearing fault diagnosis: A systematic review since 2016

X Chen, R Yang, Y Xue, M Huang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The traditional deep learning-based bearing fault diagnosis approaches assume that the
training and test data follow the same distribution. This assumption, however, is not always …

Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

J Chen, R Huang, Z Chen, W Mao, W Li - Mechanical Systems and Signal …, 2023 - Elsevier
Accurate remaining useful life (RUL) prediction for rolling bearings encounters many
challenges such as complex degradation processes, varying working conditions, and …

A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings

Y Cao, Y Ding, M Jia, R Tian - Reliability Engineering & System Safety, 2021 - Elsevier
Remaining useful life (RUL) prediction has been a hotspot in the engineering field, which is
useful to avoid unexpected breakdowns and reduce maintenance costs of the system. Due …

Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects

Y Feng, J Chen, J **e, T Zhang, H Lv, T Pan - Knowledge-Based Systems, 2022 - Elsevier
The advances of intelligent fault diagnosis in recent years show that deep learning has
strong capability of automatic feature extraction and accurate identification for fault signals …

A hybrid prognostics approach for estimating remaining useful life of rolling element bearings

B Wang, Y Lei, N Li, N Li - IEEE Transactions on Reliability, 2018 - ieeexplore.ieee.org
Remaining useful life (RUL) prediction of rolling element bearings plays a pivotal role in
reducing costly unplanned maintenance and increasing the reliability, availability, and safety …

Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study

Z Zhao, T Li, J Wu, C Sun, S Wang, R Yan, X Chen - ISA transactions, 2020 - Elsevier
Rotating machinery intelligent diagnosis based on deep learning (DL) has gone through
tremendous progress, which can help reduce costly breakdowns. However, different …

A comprehensive review on convolutional neural network in machine fault diagnosis

J Jiao, M Zhao, J Lin, K Liang - Neurocomputing, 2020 - Elsevier
With the rapid development of manufacturing industry, machine fault diagnosis has become
increasingly significant to ensure safe equipment operation and production. Consequently …

Deep learning algorithms for bearing fault diagnostics—A comprehensive review

S Zhang, S Zhang, B Wang, TG Habetler - IEEE Access, 2020 - ieeexplore.ieee.org
In this survey paper, we systematically summarize existing literature on bearing fault
diagnostics with deep learning (DL) algorithms. While conventional machine learning (ML) …

Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review

D Neupane, J Seok - Ieee Access, 2020 - ieeexplore.ieee.org
A smart factory is a highly digitized and connected production facility that relies on smart
manufacturing. Additionally, artificial intelligence is the core technology of smart factories …

Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks

X Li, Y Xu, N Li, B Yang, Y Lei - IEEE/CAA Journal of …, 2022 - ieeexplore.ieee.org
In recent years, intelligent data-driven prognostic methods have been successfully
developed, and good machinery health assessment performance has been achieved …