Toward a theoretical foundation of policy optimization for learning control policies

B Hu, K Zhang, N Li, M Mesbahi… - Annual Review of …, 2023 - annualreviews.org
Gradient-based methods have been widely used for system design and optimization in
diverse application domains. Recently, there has been a renewed interest in studying …

A tour of reinforcement learning: The view from continuous control

B Recht - Annual Review of Control, Robotics, and Autonomous …, 2019 - annualreviews.org
This article surveys reinforcement learning from the perspective of optimization and control,
with a focus on continuous control applications. It reviews the general formulation …

Transformers as algorithms: Generalization and stability in in-context learning

Y Li, ME Ildiz, D Papailiopoulos… - … conference on machine …, 2023 - proceedings.mlr.press
In-context learning (ICL) is a type of prompting where a transformer model operates on a
sequence of (input, output) examples and performs inference on-the-fly. In this work, we …

The statistical complexity of interactive decision making

DJ Foster, SM Kakade, J Qian, A Rakhlin - arxiv preprint arxiv:2112.13487, 2021 - arxiv.org
A fundamental challenge in interactive learning and decision making, ranging from bandit
problems to reinforcement learning, is to provide sample-efficient, adaptive learning …

Bilinear classes: A structural framework for provable generalization in rl

S Du, S Kakade, J Lee, S Lovett… - International …, 2021 - proceedings.mlr.press
Abstract This work introduces Bilinear Classes, a new structural framework, which permit
generalization in reinforcement learning in a wide variety of settings through the use of …

When to trust your model: Model-based policy optimization

M Janner, J Fu, M Zhang… - Advances in neural …, 2019 - proceedings.neurips.cc
Designing effective model-based reinforcement learning algorithms is difficult because the
ease of data generation must be weighed against the bias of model-generated data. In this …

A convergence theory for deep learning via over-parameterization

Z Allen-Zhu, Y Li, Z Song - International conference on …, 2019 - proceedings.mlr.press
Deep neural networks (DNNs) have demonstrated dominating performance in many fields;
since AlexNet, networks used in practice are going wider and deeper. On the theoretical …

Data informativity: A new perspective on data-driven analysis and control

HJ Van Waarde, J Eising… - … on Automatic Control, 2020 - ieeexplore.ieee.org
The use of persistently exciting data has recently been popularized in the context of data-
driven analysis and control. Such data have been used to assess system-theoretic …

Data-enabled predictive control: In the shallows of the DeePC

J Coulson, J Lygeros, F Dörfler - 2019 18th European Control …, 2019 - ieeexplore.ieee.org
We consider the problem of optimal trajectory tracking for unknown systems. A novel data-
enabled predictive control (DeePC) algorithm is presented that computes optimal and safe …

Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms

C **, Q Liu, S Miryoosefi - Advances in neural information …, 2021 - proceedings.neurips.cc
Finding the minimal structural assumptions that empower sample-efficient learning is one of
the most important research directions in Reinforcement Learning (RL). This paper …