A survey on deep learning for software engineering

Y Yang, X **a, D Lo, J Grundy - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
In 2006, Geoffrey Hinton proposed the concept of training “Deep Neural Networks (DNNs)”
and an improved model training method to break the bottleneck of neural network …

Deep learning-based software engineering: progress, challenges, and opportunities

X Chen, X Hu, Y Huang, H Jiang, W Ji, Y Jiang… - Science China …, 2025 - Springer
Researchers have recently achieved significant advances in deep learning techniques,
which in turn has substantially advanced other research disciplines, such as natural …

Bgnn4vd: Constructing bidirectional graph neural-network for vulnerability detection

S Cao, X Sun, L Bo, Y Wei, B Li - Information and Software Technology, 2021 - Elsevier
Context: Previous studies have shown that existing deep learning-based approaches can
significantly improve the performance of vulnerability detection. They represent code in …

A survey on machine learning techniques for source code analysis

T Sharma, M Kechagia, S Georgiou, R Tiwari… - arxiv preprint arxiv …, 2021 - arxiv.org
The advancements in machine learning techniques have encouraged researchers to apply
these techniques to a myriad of software engineering tasks that use source code analysis …

Code smell detection by deep direct-learning and transfer-learning

T Sharma, V Efstathiou, P Louridas… - Journal of Systems and …, 2021 - Elsevier
Context: An excessive number of code smells make a software system hard to evolve and
maintain. Machine learning methods, in addition to metric-based and heuristic-based …

DeleSmell: Code smell detection based on deep learning and latent semantic analysis

Y Zhang, C Ge, S Hong, R Tian, C Dong… - Knowledge-Based Systems, 2022 - Elsevier
The presence of code smells will increase the risk of failure, make software difficult to
maintain, and introduce potential technique debt in the future. Although many deep-learning …

A systematic literature review on source code similarity measurement and clone detection: Techniques, applications, and challenges

M Zakeri-Nasrabadi, S Parsa, M Ramezani… - Journal of Systems and …, 2023 - Elsevier
Measuring and evaluating source code similarity is a fundamental software engineering
activity that embraces a broad range of applications, including but not limited to code …

[HTML][HTML] Automatic detection of Long Method and God Class code smells through neural source code embeddings

A Kovačević, J Slivka, D Vidaković, KG Grujić… - Expert Systems with …, 2022 - Elsevier
Code smells are structures in code that often harm its quality. Manually detecting code
smells is challenging, so researchers proposed many automatic detectors. Traditional code …

Deep learning approaches for bad smell detection: a systematic literature review

A Alazba, H Aljamaan, M Alshayeb - Empirical Software Engineering, 2023 - Springer
Context Bad smells negatively impact software quality metrics such as understandability,
reusability, and maintainability. Reduced costs and enhanced software quality can be …

A systematic literature review on the code smells datasets and validation mechanisms

M Zakeri-Nasrabadi, S Parsa, E Esmaili… - ACM Computing …, 2023 - dl.acm.org
The accuracy reported for code smell-detecting tools varies depending on the dataset used
to evaluate the tools. Our survey of 45 existing datasets reveals that the adequacy of a …