Radiomics in breast cancer classification and prediction

A Conti, A Duggento, I Indovina, M Guerrisi… - Seminars in cancer …, 2021 - Elsevier
Breast Cancer (BC) is the common form of cancer in women. Its diagnosis and screening are
usually performed through different imaging modalities such as mammography, magnetic …

Advances in auto-segmentation

CE Cardenas, J Yang, BM Anderson, LE Court… - Seminars in radiation …, 2019 - Elsevier
Manual image segmentation is a time-consuming task routinely performed in radiotherapy to
identify each patient's targets and anatomical structures. The efficacy and safety of the …

Multi-scale self-guided attention for medical image segmentation

A Sinha, J Dolz - IEEE journal of biomedical and health …, 2020 - ieeexplore.ieee.org
Even though convolutional neural networks (CNNs) are driving progress in medical image
segmentation, standard models still have some drawbacks. First, the use of multi-scale …

Reducing the hausdorff distance in medical image segmentation with convolutional neural networks

D Karimi, SE Salcudean - IEEE Transactions on medical …, 2019 - ieeexplore.ieee.org
The Hausdorff Distance (HD) is widely used in evaluating medical image segmentation
methods. However, the existing segmentation methods do not attempt to reduce HD directly …

Self-supervision with superpixels: Training few-shot medical image segmentation without annotation

C Ouyang, C Biffi, C Chen, T Kart, H Qiu… - Computer Vision–ECCV …, 2020 - Springer
Few-shot semantic segmentation (FSS) has great potential for medical imaging applications.
Most of the existing FSS techniques require abundant annotated semantic classes for …

Transformation-consistent self-ensembling model for semisupervised medical image segmentation

X Li, L Yu, H Chen, CW Fu, L **ng… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
A common shortfall of supervised deep learning for medical imaging is the lack of labeled
data, which is often expensive and time consuming to collect. This article presents a new …

Automatic multi-organ segmentation on abdominal CT with dense V-networks

E Gibson, F Giganti, Y Hu, E Bonmati… - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Automatic segmentation of abdominal anatomy on computed tomography (CT) images can
support diagnosis, treatment planning, and treatment delivery workflows. Segmentation …

3D deeply supervised network for automated segmentation of volumetric medical images

Q Dou, L Yu, H Chen, Y **, X Yang, J Qin… - Medical image …, 2017 - Elsevier
While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D
medical image segmentation, it is still a difficult task for CNNs to segment important organs …

[HTML][HTML] Integrating spatial configuration into heatmap regression based CNNs for landmark localization

C Payer, D Štern, H Bischof, M Urschler - Medical image analysis, 2019 - Elsevier
In many medical image analysis applications, only a limited amount of training data is
available due to the costs of image acquisition and the large manual annotation effort …

A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis

L Liang, M Liu, C Martin, W Sun - Journal of The Royal …, 2018 - royalsocietypublishing.org
Structural finite-element analysis (FEA) has been widely used to study the biomechanics of
human tissues and organs, as well as tissue–medical device interactions, and treatment …