Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries

H Ji, J Wang, J Ma, HM Cheng, G Zhou - Chemical Society Reviews, 2023 - pubs.rsc.org
Advancement in energy storage technologies is closely related to social development.
However, a significant conflict has arisen between the explosive growth in battery demand …

Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review

FMNU Khan, MG Rasul, ASM Sayem… - Journal of Energy …, 2023 - Elsevier
Lithium-ion batteries (LIBs) have nowadays become outstanding rechargeable energy
storage devices with rapidly expanding fields of applications due to convenient features like …

Compositionally complex do** for zero-strain zero-cobalt layered cathodes

R Zhang, C Wang, P Zou, R Lin, L Ma, L Yin, T Li, W Xu… - Nature, 2022 - nature.com
The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have
made the elimination of Co a pressing need for the automotive industry. Owing to their high …

Fundamental understanding and facing challenges in structural design of porous Si‐based anodes for lithium‐ion batteries

Z Cheng, H Jiang, X Zhang, F Cheng… - Advanced Functional …, 2023 - Wiley Online Library
As one of the most electrochemical energy storage devices, lithium‐ion batteries (LIBs)
remain the workhorse of the energy market due to their unparalleled advantages …

Challenges and opportunities to mitigate the catastrophic thermal runaway of high‐energy batteries

Y Wang, X Feng, W Huang, X He… - Advanced Energy …, 2023 - Wiley Online Library
Li‐ion batteries (LIBs) that promise both safety and high energy density are critical for a new‐
energy future. However, recent studies on battery thermal runaway (TR) suggest that the …

The significance of mitigating crosstalk in lithium-ion batteries: a review

Y Song, L Wang, L Sheng, D Ren, H Liang… - Energy & …, 2023 - pubs.rsc.org
High-energy lithium-ion batteries are being increasingly applied in the electric vehicle
industry but suffer from rapid capacity fading and a high risk of thermal runaway. The …

Surface do** vs. bulk do** of cathode materials for lithium-ion batteries: a review

H Qian, H Ren, Y Zhang, X He, W Li, J Wang… - Electrochemical Energy …, 2022 - Springer
To address the capacity degradation, voltage fading, structural instability and adverse
interface reactions in cathode materials of lithium-ion batteries (LIBs), numerous …

A semisolvated sole-solvent electrolyte for high-voltage lithium metal batteries

Z Piao, X Wu, HR Ren, G Lu, R Gao… - Journal of the …, 2023 - ACS Publications
Lithium metal batteries (LMBs) coupled with a high-voltage Ni-rich cathode are promising for
meeting the increasing demand for high energy density. However, aggressive electrode …

A review of degradation mechanisms and recent achievements for Ni‐rich cathode‐based Li‐ion batteries

M Jiang, DL Danilov, RA Eichel… - Advanced Energy …, 2021 - Wiley Online Library
The growing demand for sustainable energy storage devices requires rechargeable lithium‐
ion batteries (LIBs) with higher specific capacity and stricter safety standards. Ni‐rich layered …

Current status and future perspective on lithium metal anode production methods

B Acebedo, MC Morant‐Miñana… - Advanced Energy …, 2023 - Wiley Online Library
Lithium metal batteries (LMBs) are one of the most promising energy storage technologies
that would overcome the limitations of current Li‐ion batteries, based on their low density …