[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature Computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Connecting ansatz expressibility to gradient magnitudes and barren plateaus

Z Holmes, K Sharma, M Cerezo, PJ Coles - PRX Quantum, 2022 - APS
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …

A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits

M Ragone, BN Bakalov, F Sauvage, AF Kemper… - Nature …, 2024 - nature.com
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …

A unified theory of barren plateaus for deep parametrized quantum circuits

MVS Cerezo de la Roca, M Ragone, B Bakalov… - Nature …, 2024 - osti.gov
AFV CoverSheet Page 1 LA-UR-23-30483 Accepted Manuscript A Lie algebraic theory of
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …

Group-invariant quantum machine learning

M Larocca, F Sauvage, FM Sbahi, G Verdon, PJ Coles… - PRX Quantum, 2022 - APS
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …

Theory of overparametrization in quantum neural networks

M Larocca, N Ju, D García-Martín, PJ Coles… - Nature Computational …, 2023 - nature.com
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …

Theory for equivariant quantum neural networks

QT Nguyen, L Schatzki, P Braccia, M Ragone, PJ Coles… - PRX Quantum, 2024 - APS
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …

Diagnosing barren plateaus with tools from quantum optimal control

M Larocca, P Czarnik, K Sharma, G Muraleedharan… - Quantum, 2022 - quantum-journal.org
Abstract Variational Quantum Algorithms (VQAs) have received considerable attention due
to their potential for achieving near-term quantum advantage. However, more work is …

Characterizing barren plateaus in quantum ansätze with the adjoint representation

E Fontana, D Herman, S Chakrabarti, N Kumar… - Nature …, 2024 - nature.com
Variational quantum algorithms, a popular heuristic for near-term quantum computers, utilize
parameterized quantum circuits which naturally express Lie groups. It has been postulated …