Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …
through a parametrized quantum circuit, and measuring the expectation value of some …
A unified theory of barren plateaus for deep parametrized quantum circuits
AFV CoverSheet Page 1 LA-UR-23-30483 Accepted Manuscript A Lie algebraic theory of
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …
Group-invariant quantum machine learning
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
Theory for equivariant quantum neural networks
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …
face trainability and generalization issues. Inspired by a similar problem, recent …
Theory of overparametrization in quantum neural networks
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …
exciting. Understanding how QNN properties (for example, the number of parameters M) …
Characterizing barren plateaus in quantum ansätze with the adjoint representation
Variational quantum algorithms, a popular heuristic for near-term quantum computers, utilize
parameterized quantum circuits which naturally express Lie groups. It has been postulated …
parameterized quantum circuits which naturally express Lie groups. It has been postulated …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …