Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …
massive model sizes that require significant computational and storage resources. To …
Recent advances on neural network pruning at initialization
Neural network pruning typically removes connections or neurons from a pretrained
converged model; while a new pruning paradigm, pruning at initialization (PaI), attempts to …
converged model; while a new pruning paradigm, pruning at initialization (PaI), attempts to …
Reproducible scaling laws for contrastive language-image learning
Scaling up neural networks has led to remarkable performance across a wide range of
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …
Model sparsity can simplify machine unlearning
In response to recent data regulation requirements, machine unlearning (MU) has emerged
as a critical process to remove the influence of specific examples from a given model …
as a critical process to remove the influence of specific examples from a given model …
Pre-trained image processing transformer
As the computing power of modern hardware is increasing strongly, pre-trained deep
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …
Chasing sparsity in vision transformers: An end-to-end exploration
Vision transformers (ViTs) have recently received explosive popularity, but their enormous
model sizes and training costs remain daunting. Conventional post-training pruning often …
model sizes and training costs remain daunting. Conventional post-training pruning often …
A unified lottery ticket hypothesis for graph neural networks
With graphs rapidly growing in size and deeper graph neural networks (GNNs) emerging,
the training and inference of GNNs become increasingly expensive. Existing network weight …
the training and inference of GNNs become increasingly expensive. Existing network weight …
Sparse training via boosting pruning plasticity with neuroregeneration
Works on lottery ticket hypothesis (LTH) and single-shot network pruning (SNIP) have raised
a lot of attention currently on post-training pruning (iterative magnitude pruning), and before …
a lot of attention currently on post-training pruning (iterative magnitude pruning), and before …
Federated dynamic sparse training: Computing less, communicating less, yet learning better
Federated learning (FL) enables distribution of machine learning workloads from the cloud
to resource-limited edge devices. Unfortunately, current deep networks remain not only too …
to resource-limited edge devices. Unfortunately, current deep networks remain not only too …
Advancing model pruning via bi-level optimization
The deployment constraints in practical applications necessitate the pruning of large-scale
deep learning models, ie, promoting their weight sparsity. As illustrated by the Lottery Ticket …
deep learning models, ie, promoting their weight sparsity. As illustrated by the Lottery Ticket …