[HTML][HTML] A survey of transformers
Transformers have achieved great success in many artificial intelligence fields, such as
natural language processing, computer vision, and audio processing. Therefore, it is natural …
natural language processing, computer vision, and audio processing. Therefore, it is natural …
A survey of deep active learning
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …
Should chatgpt be biased? challenges and risks of bias in large language models
E Ferrara - arxiv preprint arxiv:2304.03738, 2023 - arxiv.org
As the capabilities of generative language models continue to advance, the implications of
biases ingrained within these models have garnered increasing attention from researchers …
biases ingrained within these models have garnered increasing attention from researchers …
Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers
Abstract We present Scalable Interpolant Transformers (SiT), a family of generative models
built on the backbone of Diffusion Transformers (DiT). The interpolant framework, which …
built on the backbone of Diffusion Transformers (DiT). The interpolant framework, which …
Early convolutions help transformers see better
Vision transformer (ViT) models exhibit substandard optimizability. In particular, they are
sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperparameters, and …
sensitive to the choice of optimizer (AdamW vs. SGD), optimizer hyperparameters, and …
Revisiting deep learning models for tabular data
The existing literature on deep learning for tabular data proposes a wide range of novel
architectures and reports competitive results on various datasets. However, the proposed …
architectures and reports competitive results on various datasets. However, the proposed …
UTNet: a hybrid transformer architecture for medical image segmentation
Transformer architecture has emerged to be successful in a number of natural language
processing tasks. However, its applications to medical vision remain largely unexplored. In …
processing tasks. However, its applications to medical vision remain largely unexplored. In …
3d human pose estimation with spatial and temporal transformers
Transformer architectures have become the model of choice in natural language processing
and are now being introduced into computer vision tasks such as image classification, object …
and are now being introduced into computer vision tasks such as image classification, object …
A survey on vision transformer
Transformer, first applied to the field of natural language processing, is a type of deep neural
network mainly based on the self-attention mechanism. Thanks to its strong representation …
network mainly based on the self-attention mechanism. Thanks to its strong representation …
Pre-trained image processing transformer
As the computing power of modern hardware is increasing strongly, pre-trained deep
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …