Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Bias mitigation for machine learning classifiers: A comprehensive survey
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …
Fairness in ranking, part i: Score-based ranking
In the past few years, there has been much work on incorporating fairness requirements into
algorithmic rankers, with contributions coming from the data management, algorithms …
algorithmic rankers, with contributions coming from the data management, algorithms …
Towards intersectionality in machine learning: Including more identities, handling underrepresentation, and performing evaluation
Research in machine learning fairness has historically considered a single binary
demographic attribute; however, the reality is of course far more complicated. In this work …
demographic attribute; however, the reality is of course far more complicated. In this work …
Deep learning for credit card fraud detection: A review of algorithms, challenges, and solutions
Deep learning (DL), a branch of machine learning (ML), is the core technology in today's
technological advancements and innovations. Deep learning-based approaches are the …
technological advancements and innovations. Deep learning-based approaches are the …
[HTML][HTML] Supervised machine learning in drug discovery and development: Algorithms, applications, challenges, and prospects
Drug discovery and development is a time-consuming process that involves identifying,
designing, and testing new drugs to address critical medical needs. In recent years, machine …
designing, and testing new drugs to address critical medical needs. In recent years, machine …
Detecting shortcut learning for fair medical AI using shortcut testing
Abstract Machine learning (ML) holds great promise for improving healthcare, but it is critical
to ensure that its use will not propagate or amplify health disparities. An important step is to …
to ensure that its use will not propagate or amplify health disparities. An important step is to …
Fairness in machine learning
Abstract Machine learning based systems are reaching society at large and in many aspects
of everyday life. This phenomenon has been accompanied by concerns about the ethical …
of everyday life. This phenomenon has been accompanied by concerns about the ethical …
Fairness in ranking: A survey
In the past few years, there has been much work on incorporating fairness requirements into
algorithmic rankers, with contributions coming from the data management, algorithms …
algorithmic rankers, with contributions coming from the data management, algorithms …
Explainable and Fair AI: Balancing Performance in Financial and Real Estate Machine Learning Models
This paper introduces a framework that integrates fairness and transparency into advanced
machine learning models, specifically LightGBM and XGBoost, applied to loan approval and …
machine learning models, specifically LightGBM and XGBoost, applied to loan approval and …
Algorithmic fairness datasets: the story so far
Data-driven algorithms are studied and deployed in diverse domains to support critical
decisions, directly impacting people's well-being. As a result, a growing community of …
decisions, directly impacting people's well-being. As a result, a growing community of …