Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Gaussian process regression for materials and molecules
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Machine learning interatomic potentials and long-range physics
Advances in machine learned interatomic potentials (MLIPs), such as those using neural
networks, have resulted in short-range models that can infer interaction energies with near …
networks, have resulted in short-range models that can infer interaction energies with near …
Four generations of high-dimensional neural network potentials
J Behler - Chemical Reviews, 2021 - ACS Publications
Since their introduction about 25 years ago, machine learning (ML) potentials have become
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
an important tool in the field of atomistic simulations. After the initial decade, in which neural …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
Abstract Machine-learned force fields combine the accuracy of ab initio methods with the
efficiency of conventional force fields. However, current machine-learned force fields …
efficiency of conventional force fields. However, current machine-learned force fields …
Realistic phase diagram of water from “first principles” data-driven quantum simulations
Since the experimental characterization of the low-pressure region of water's phase diagram
in the early 1900s, scientists have been on a quest to understand the thermodynamic …
in the early 1900s, scientists have been on a quest to understand the thermodynamic …
Ab initio simulations of water/metal interfaces
Structures and processes at water/metal interfaces play an important technological role in
electrochemical energy conversion and storage, photoconversion, sensors, and corrosion …
electrochemical energy conversion and storage, photoconversion, sensors, and corrosion …
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
In recent years, machine learning (ML) methods have become increasingly popular in
computational chemistry. After being trained on appropriate ab initio reference data, these …
computational chemistry. After being trained on appropriate ab initio reference data, these …
Quantum chemistry in the age of machine learning
PO Dral - The journal of physical chemistry letters, 2020 - ACS Publications
As the quantum chemistry (QC) community embraces machine learning (ML), the number of
new methods and applications based on the combination of QC and ML is surging. In this …
new methods and applications based on the combination of QC and ML is surging. In this …
First principles neural network potentials for reactive simulations of large molecular and condensed systems
J Behler - Angewandte Chemie International Edition, 2017 - Wiley Online Library
Modern simulation techniques have reached a level of maturity which allows a wide range of
problems in chemistry and materials science to be addressed. Unfortunately, the application …
problems in chemistry and materials science to be addressed. Unfortunately, the application …