A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

Weakly supervised object localization and detection: A survey

D Zhang, J Han, G Cheng… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for develo** new …

Scaling vision transformers to 22 billion parameters

M Dehghani, J Djolonga, B Mustafa… - International …, 2023 - proceedings.mlr.press
The scaling of Transformers has driven breakthrough capabilities for language models. At
present, the largest large language models (LLMs) contain upwards of 100B parameters …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arxiv preprint arxiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Segment and Recognize Anything at Any Granularity

F Li, H Zhang, P Sun, X Zou, S Liu, C Li, J Yang… - … on Computer Vision, 2024 - Springer
In this work, we introduce Semantic-SAM, an augmented image segmentation foundation for
segmenting and recognizing anything at desired granularities. Compared to the …

Visual prompt tuning

M Jia, L Tang, BC Chen, C Cardie, S Belongie… - … on Computer Vision, 2022 - Springer
The current modus operandi in adapting pre-trained models involves updating all the
backbone parameters, ie., full fine-tuning. This paper introduces Visual Prompt Tuning (VPT) …

Slip: Self-supervision meets language-image pre-training

N Mu, A Kirillov, D Wagner, S **e - European conference on computer …, 2022 - Springer
Recent work has shown that self-supervised pre-training leads to improvements over
supervised learning on challenging visual recognition tasks. CLIP, an exciting new …

Delving into out-of-distribution detection with vision-language representations

Y Ming, Z Cai, J Gu, Y Sun, W Li… - Advances in neural …, 2022 - proceedings.neurips.cc
Recognizing out-of-distribution (OOD) samples is critical for machine learning systems
deployed in the open world. The vast majority of OOD detection methods are driven by a …

Forward compatible few-shot class-incremental learning

DW Zhou, FY Wang, HJ Ye, L Ma… - Proceedings of the …, 2022 - openaccess.thecvf.com
Novel classes frequently arise in our dynamically changing world, eg, new users in the
authentication system, and a machine learning model should recognize new classes without …

Conformer: Local features coupling global representations for visual recognition

Z Peng, W Huang, S Gu, L **e… - Proceedings of the …, 2021 - openaccess.thecvf.com
Abstract Within Convolutional Neural Network (CNN), the convolution operations are good
at extracting local features but experience difficulty to capture global representations. Within …