[HTML][HTML] Graph neural networks: A review of methods and applications
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …
information among elements. Modeling physics systems, learning molecular fingerprints …
Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems
Despite its great success, machine learning can have its limits when dealing with insufficient
training data. A potential solution is the additional integration of prior knowledge into the …
training data. A potential solution is the additional integration of prior knowledge into the …
Voxposer: Composable 3d value maps for robotic manipulation with language models
Large language models (LLMs) are shown to possess a wealth of actionable knowledge that
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …
can be extracted for robot manipulation in the form of reasoning and planning. Despite the …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
Learning to simulate complex physics with graph networks
A Sanchez-Gonzalez, J Godwin… - International …, 2020 - proceedings.mlr.press
Here we present a machine learning framework and model implementation that can learn to
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …
Intuitive physics learning in a deep-learning model inspired by developmental psychology
Abstract 'Intuitive physics' enables our pragmatic engagement with the physical world and
forms a key component of 'common sense'aspects of thought. Current artificial intelligence …
forms a key component of 'common sense'aspects of thought. Current artificial intelligence …
Discovering symbolic models from deep learning with inductive biases
We develop a general approach to distill symbolic representations of a learned deep model
by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The …
by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The …
[PDF][PDF] Integrating physics-based modeling with machine learning: A survey
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …
require novel methodologies that are able to integrate traditional physics-based modeling …
Hamiltonian neural networks
S Greydanus, M Dzamba… - Advances in neural …, 2019 - proceedings.neurips.cc
Even though neural networks enjoy widespread use, they still struggle to learn the basic
laws of physics. How might we endow them with better inductive biases? In this paper, we …
laws of physics. How might we endow them with better inductive biases? In this paper, we …
Explainable machine learning for scientific insights and discoveries
Machine learning methods have been remarkably successful for a wide range of application
areas in the extraction of essential information from data. An exciting and relatively recent …
areas in the extraction of essential information from data. An exciting and relatively recent …