Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey of graph neural networks for recommender systems: Challenges, methods, and directions
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …
Recently, graph neural networks have become the new state-of-the-art approach to …
Cross-domain recommendation: challenges, progress, and prospects
To address the long-standing data sparsity problem in recommender systems (RSs), cross-
domain recommendation (CDR) has been proposed to leverage the relatively richer …
domain recommendation (CDR) has been proposed to leverage the relatively richer …
Personalized transfer of user preferences for cross-domain recommendation
Cold-start problem is still a very challenging problem in recommender systems. Fortunately,
the interactions of the cold-start users in the auxiliary source domain can help cold-start …
the interactions of the cold-start users in the auxiliary source domain can help cold-start …
Recbole 2.0: Towards a more up-to-date recommendation library
In order to support the study of recent advances in recommender systems, this paper
presents an extended recommendation library consisting of eight packages for up-to-date …
presents an extended recommendation library consisting of eight packages for up-to-date …
Disencdr: Learning disentangled representations for cross-domain recommendation
Data sparsity is a long-standing problem in recommender systems. To alleviate it, Cross-
Domain Recommendation (CDR) has attracted a surge of interests, which utilizes the rich …
Domain Recommendation (CDR) has attracted a surge of interests, which utilizes the rich …
Meta-learning on heterogeneous information networks for cold-start recommendation
Cold-start recommendation has been a challenging problem due to sparse user-item
interactions for new users or items. Existing efforts have alleviated the cold-start issue to …
interactions for new users or items. Existing efforts have alleviated the cold-start issue to …
A survey on cross-domain recommendation: taxonomies, methods, and future directions
Traditional recommendation systems are faced with two long-standing obstacles, namely
data sparsity and cold-start problems, which promote the emergence and development of …
data sparsity and cold-start problems, which promote the emergence and development of …
Cross-domain recommendation to cold-start users via variational information bottleneck
Recommender systems have been widely deployed in many real-world applications, but
usually suffer from the long-standing user cold-start problem. As a promising way, Cross …
usually suffer from the long-standing user cold-start problem. As a promising way, Cross …
Semi-supervised and un-supervised clustering: A review and experimental evaluation
K Taha - Information Systems, 2023 - Elsevier
Retrieving, analyzing, and processing large data can be challenging. An effective and
efficient mechanism for overcoming these challenges is to cluster the data into a compact …
efficient mechanism for overcoming these challenges is to cluster the data into a compact …
CATN: Cross-domain recommendation for cold-start users via aspect transfer network
In a large recommender system, the products (or items) could be in many different
categories or domains. Given two relevant domains (eg, Book and Movie), users may have …
categories or domains. Given two relevant domains (eg, Book and Movie), users may have …