Unconventional thermoelectric materials for energy harvesting and sensing applications

M Massetti, F Jiao, AJ Ferguson, D Zhao… - Chemical …, 2021 - ACS Publications
Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this
tremendous amount of energy holds significant promise for a more sustainable society …

Advanced thermoelectric design: from materials and structures to devices

XL Shi, J Zou, ZG Chen - Chemical reviews, 2020 - ACS Publications
The long-standing popularity of thermoelectric materials has contributed to the creation of
various thermoelectric devices and stimulated the development of strategies to improve their …

Flexible thermoelectric materials and devices: From materials to applications

L Zhang, XL Shi, YL Yang, ZG Chen - Materials today, 2021 - Elsevier
With the ever-growing development of multifunctional and miniature electronics, the
exploring of high-power microwatt-milliwatt self-charging technology is highly essential …

Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications

S Xu, XL Shi, M Dargusch, C Di, J Zou… - Progress in Materials …, 2021 - Elsevier
Conducting polymers have drawn considerable attention in the field of wearable and
implantable thermoelectric devices due to their unique advantages, including availability …

Flexible thermoelectric materials and generators: challenges and innovations

Y Wang, L Yang, XL Shi, X Shi, L Chen… - Advanced …, 2019 - Wiley Online Library
The urgent need for ecofriendly, stable, long‐lifetime power sources is driving the booming
market for miniaturized and integrated electronics, including wearable and medical …

Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics

N Nandihalli, CJ Liu, T Mori - Nano Energy, 2020 - Elsevier
Organic thermoelectric (TE) materials capitalize on advantages such as low thermal
conductivity, low-cost, eco-friendly, versatile processability, light-weight, mechanical …

A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications

G Prunet, F Pawula, G Fleury, E Cloutet… - Materials Today …, 2021 - Elsevier
There is a growing demand for flexible and wearable next-generation electronic devices that
must be capable of bending and stretching under mechanical deformation. In this regard …

Thermoelectrics: From history, a window to the future

D Beretta, N Neophytou, JM Hodges… - Materials Science and …, 2019 - Elsevier
Thermoelectricity offers a sustainable path to recover and convert waste heat into readily
available electric energy, and has been studied for more than two centuries. From the …

Thermoelectric materials and applications for energy harvesting power generation

I Petsagkourakis, K Tybrandt, X Crispin… - … and technology of …, 2018 - Taylor & Francis
Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a
key energy harvesting technology to power ubiquitous sensors and wearable devices in the …

Fiber-based thermoelectrics for solid, portable, and wearable electronics

XL Shi, WY Chen, T Zhang, J Zou… - Energy & Environmental …, 2021 - pubs.rsc.org
With the growing demand for solid, portable, and wearable electronics, exploring recyclable
and stable charging and cooling techniques is of significance. Fiber-based thermoelectrics …