Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Transfer learning for medical image classification: a literature review
HE Kim, A Cosa-Linan, N Santhanam, M Jannesari… - BMC medical …, 2022 - Springer
Background Transfer learning (TL) with convolutional neural networks aims to improve
performances on a new task by leveraging the knowledge of similar tasks learned in …
performances on a new task by leveraging the knowledge of similar tasks learned in …
Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges
This paper firstly introduces common wearable sensors, smart wearable devices and the key
application areas. Since multi-sensor is defined by the presence of more than one model or …
application areas. Since multi-sensor is defined by the presence of more than one model or …
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …
large amount of data to achieve exceptional performance. Unfortunately, many applications …
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …
of clinical experts. However, in settings differing from those of the training dataset, the …
Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions
In recent times, the machine learning (ML) community has recognized the deep learning
(DL) computing model as the Gold Standard. DL has gradually become the most widely …
(DL) computing model as the Gold Standard. DL has gradually become the most widely …
Big self-supervised models advance medical image classification
Self-supervised pretraining followed by supervised fine-tuning has seen success in image
recognition, especially when labeled examples are scarce, but has received limited attention …
recognition, especially when labeled examples are scarce, but has received limited attention …
DSCC_Net: multi-classification deep learning models for diagnosing of skin cancer using dermoscopic images
Simple Summary This paper proposes a deep learning-based skin cancer classification
network (DSCC_Net) that is based on a convolutional neural network (CNN) and …
network (DSCC_Net) that is based on a convolutional neural network (CNN) and …
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …
Towards Risk‐Free Trustworthy Artificial Intelligence: Significance and Requirements
Given the tremendous potential and influence of artificial intelligence (AI) and algorithmic
decision‐making (DM), these systems have found wide‐ranging applications across diverse …
decision‐making (DM), these systems have found wide‐ranging applications across diverse …
Novel transfer learning approach for medical imaging with limited labeled data
Deep learning requires a large amount of data to perform well. However, the field of medical
image analysis suffers from a lack of sufficient data for training deep learning models …
image analysis suffers from a lack of sufficient data for training deep learning models …