A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A survey on curriculum learning

X Wang, Y Chen, W Zhu - IEEE transactions on pattern analysis …, 2021 - ieeexplore.ieee.org
Curriculum learning (CL) is a training strategy that trains a machine learning model from
easier data to harder data, which imitates the meaningful learning order in human curricula …

Part-based pseudo label refinement for unsupervised person re-identification

Y Cho, WJ Kim, S Hong… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised person re-identification (re-ID) aims at learning discriminative representations
for person retrieval from unlabeled data. Recent techniques accomplish this task by using …

Data collection and quality challenges in deep learning: A data-centric ai perspective

SE Whang, Y Roh, H Song, JG Lee - The VLDB Journal, 2023 - Springer
Data-centric AI is at the center of a fundamental shift in software engineering where machine
learning becomes the new software, powered by big data and computing infrastructure …

[HTML][HTML] Embracing change: Continual learning in deep neural networks

R Hadsell, D Rao, AA Rusu, R Pascanu - Trends in cognitive sciences, 2020 - cell.com
Artificial intelligence research has seen enormous progress over the past few decades, but it
predominantly relies on fixed datasets and stationary environments. Continual learning is an …

Learning from noisy labels with deep neural networks: A survey

H Song, M Kim, D Park, Y Shin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …

Early-learning regularization prevents memorization of noisy labels

S Liu, J Niles-Weed, N Razavian… - Advances in neural …, 2020 - proceedings.neurips.cc
We propose a novel framework to perform classification via deep learning in the presence of
noisy annotations. When trained on noisy labels, deep neural networks have been observed …

Curriculum learning: A survey

P Soviany, RT Ionescu, P Rota, N Sebe - International Journal of …, 2022 - Springer
Training machine learning models in a meaningful order, from the easy samples to the hard
ones, using curriculum learning can provide performance improvements over the standard …

Understanding Dataset Difficulty with -Usable Information

K Ethayarajh, Y Choi… - … Conference on Machine …, 2022 - proceedings.mlr.press
Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to
humans; the bigger the performance gap, the harder the dataset is said to be. However, this …

Dataset cartography: Map** and diagnosing datasets with training dynamics

S Swayamdipta, R Schwartz, N Lourie, Y Wang… - arxiv preprint arxiv …, 2020 - arxiv.org
Large datasets have become commonplace in NLP research. However, the increased
emphasis on data quantity has made it challenging to assess the quality of data. We …