Knowledge graphs: Opportunities and challenges

C Peng, F **a, M Naseriparsa, F Osborne - Artificial Intelligence Review, 2023 - Springer
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …

Large-scale multi-modal pre-trained models: A comprehensive survey

X Wang, G Chen, G Qian, P Gao, XY Wei… - Machine Intelligence …, 2023 - Springer
With the urgent demand for generalized deep models, many pre-trained big models are
proposed, such as bidirectional encoder representations (BERT), vision transformer (ViT) …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A survey of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal

K Liang, L Meng, M Liu, Y Liu, W Tu… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on
mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research …

A survey on knowledge graphs: Representation, acquisition, and applications

S Ji, S Pan, E Cambria, P Marttinen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Human knowledge provides a formal understanding of the world. Knowledge graphs that
represent structural relations between entities have become an increasingly popular …

A review: Knowledge reasoning over knowledge graph

X Chen, S Jia, Y **ang - Expert systems with applications, 2020 - Elsevier
Mining valuable hidden knowledge from large-scale data relies on the support of reasoning
technology. Knowledge graphs, as a new type of knowledge representation, have gained …

KG-BERT: BERT for knowledge graph completion

L Yao, C Mao, Y Luo - arxiv preprint arxiv:1909.03193, 2019 - arxiv.org
Knowledge graphs are important resources for many artificial intelligence tasks but often
suffer from incompleteness. In this work, we propose to use pre-trained language models for …

Knowledge graph completion: A review

Z Chen, Y Wang, B Zhao, J Cheng, X Zhao… - Ieee …, 2020 - ieeexplore.ieee.org
Knowledge graph completion (KGC) is a hot topic in knowledge graph construction and
related applications, which aims to complete the structure of knowledge graph by predicting …

A comprehensive survey on automatic knowledge graph construction

L Zhong, J Wu, Q Li, H Peng, X Wu - ACM Computing Surveys, 2023 - dl.acm.org
Automatic knowledge graph construction aims at manufacturing structured human
knowledge. To this end, much effort has historically been spent extracting informative fact …

A survey on knowledge graph embeddings for link prediction

M Wang, L Qiu, X Wang - Symmetry, 2021 - mdpi.com
Knowledge graphs (KGs) have been widely used in the field of artificial intelligence, such as
in information retrieval, natural language processing, recommendation systems, etc …