Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein Projection

H Van Assel, C Vincent-Cuaz, N Courty… - ar**
J Yuan, C Zeng, F **e, Z Cao, M Chen, R Wang… - arxiv preprint arxiv …, 2024 - arxiv.org
Clustering is a fundamental task in machine learning and data science, and similarity graph-
based clustering is an important approach within this domain. Doubly stochastic symmetric …

Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets

B Landa, Y Kluger, R Ma - arxiv preprint arxiv:2407.01718, 2024 - arxiv.org
Embedding high-dimensional data into a low-dimensional space is an indispensable
component of data analysis. In numerous applications, it is necessary to align and jointly …

Neuc-MDS: Non-Euclidean Multidimensional Scaling Through Bilinear Forms

C Deng, J Gao, K Lu, F Luo, H Sun, C **n - arxiv preprint arxiv …, 2024 - arxiv.org
We introduce Non-Euclidean-MDS (Neuc-MDS), an extension of classical Multidimensional
Scaling (MDS) that accommodates non-Euclidean and non-metric inputs. The main idea is …

Optimal Transport with Adaptive Regularisation

H Van Assel, T Vayer, R Flamary, N Courty - arxiv preprint arxiv …, 2023 - arxiv.org
Regularising the primal formulation of optimal transport (OT) with a strictly convex term leads
to enhanced numerical complexity and a denser transport plan. Many formulations impose a …

A dimensionality reduction technique based on the Gromov-Wasserstein distance

RP Eufrazio, EF Montesuma, CC Cavalcante - arxiv preprint arxiv …, 2025 - arxiv.org
Analyzing relationships between objects is a pivotal problem within data science. In this
context, Dimensionality reduction (DR) techniques are employed to generate smaller and …