Utilizing graph machine learning within drug discovery and development

T Gaudelet, B Day, AR Jamasb, J Soman… - Briefings in …, 2021 - academic.oup.com
Graph machine learning (GML) is receiving growing interest within the pharmaceutical and
biotechnology industries for its ability to model biomolecular structures, the functional …

Deep multi-view learning methods: A review

X Yan, S Hu, Y Mao, Y Ye, H Yu - Neurocomputing, 2021 - Elsevier
Multi-view learning (MVL) has attracted increasing attention and achieved great practical
success by exploiting complementary information of multiple features or modalities …

Unsupervised K-means clustering algorithm

KP Sinaga, MS Yang - IEEE access, 2020 - ieeexplore.ieee.org
The k-means algorithm is generally the most known and used clustering method. There are
various extensions of k-means to be proposed in the literature. Although it is an …

Dynamic network embedding survey

G Xue, M Zhong, J Li, J Chen, C Zhai, R Kong - Neurocomputing, 2022 - Elsevier
Since many real world networks are evolving over time, such as social networks and user-
item networks, there are increasing research efforts on dynamic network embedding in …

A survey on network embedding

P Cui, X Wang, J Pei, W Zhu - IEEE transactions on knowledge …, 2018 - ieeexplore.ieee.org
Network embedding assigns nodes in a network to low-dimensional representations and
effectively preserves the network structure. Recently, a significant amount of progresses …

Circular RNAs and complex diseases: from experimental results to computational models

CC Wang, CD Han, Q Zhao, X Chen - Briefings in bioinformatics, 2021 - academic.oup.com
Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules
with a variety of biological functions. Studies have shown that circRNAs are involved in a …

A review on semi-supervised clustering

J Cai, J Hao, H Yang, X Zhao, Y Yang - Information Sciences, 2023 - Elsevier
Abstract Semi-supervised clustering (SSC), a technique integrating semi-supervised
learning and clustering analysis, incorporates the given prior information (eg, class labels …

Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models

L Huang, L Zhang, X Chen - Briefings in bioinformatics, 2022 - academic.oup.com
Since the problem proposed in late 2000s, microRNA–disease association (MDA)
predictions have been implemented based on the data fusion paradigm. Integrating diverse …

Deep subspace clustering networks

P Ji, T Zhang, H Li, M Salzmann… - Advances in neural …, 2017 - proceedings.neurips.cc
We present a novel deep neural network architecture for unsupervised subspace clustering.
This architecture is built upon deep auto-encoders, which non-linearly map the input data …

Community preserving network embedding

X Wang, P Cui, J Wang, J Pei, W Zhu… - Proceedings of the AAAI …, 2017 - ojs.aaai.org
Network embedding, aiming to learn the low-dimensional representations of nodes in
networks, is of paramount importance in many real applications. One basic requirement of …