Domain adaptation for medical image analysis: a survey

H Guan, M Liu - IEEE Transactions on Biomedical Engineering, 2021 - ieeexplore.ieee.org
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

SK Zhou, H Greenspan, C Davatzikos… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …

Deep learning for cardiac image segmentation: a review

C Chen, C Qin, H Qiu, G Tarroni, J Duan… - Frontiers in …, 2020 - frontiersin.org
Deep learning has become the most widely used approach for cardiac image segmentation
in recent years. In this paper, we provide a review of over 100 cardiac image segmentation …

f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks

T Schlegl, P Seeböck, SM Waldstein, G Langs… - Medical image …, 2019 - Elsevier
Obtaining expert labels in clinical imaging is difficult since exhaustive annotation is time-
consuming. Furthermore, not all possibly relevant markers may be known and sufficiently …

An overview of deep learning in medical imaging focusing on MRI

AS Lundervold, A Lundervold - arxiv preprint arxiv:1811.10052, 2018 - arxiv.org
What has happened in machine learning lately, and what does it mean for the future of
medical image analysis? Machine learning has witnessed a tremendous amount of attention …

A brief survey on semantic segmentation with deep learning

S Hao, Y Zhou, Y Guo - Neurocomputing, 2020 - Elsevier
Semantic segmentation is a challenging task in computer vision. In recent years, the
performance of semantic segmentation has been greatly improved by using deep learning …

A survey on active learning and human-in-the-loop deep learning for medical image analysis

S Budd, EC Robinson, B Kainz - Medical image analysis, 2021 - Elsevier
Fully automatic deep learning has become the state-of-the-art technique for many tasks
including image acquisition, analysis and interpretation, and for the extraction of clinically …

[BOK][B] Synthetic data for deep learning

SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …

Generative adversarial network in medical imaging: A review

X Yi, E Walia, P Babyn - Medical image analysis, 2019 - Elsevier
Generative adversarial networks have gained a lot of attention in the computer vision
community due to their capability of data generation without explicitly modelling the …

[HTML][HTML] SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining

B Billot, DN Greve, O Puonti, A Thielscher… - Medical image …, 2023 - Elsevier
Despite advances in data augmentation and transfer learning, convolutional neural
networks (CNNs) difficultly generalise to unseen domains. When segmenting brain scans …