Classical and quantum conformal field theory
G Moore, N Seiberg - Communications in Mathematical Physics, 1989 - Springer
We define chiral vertex operators and duality matrices and review the fundamental identities
they satisfy. In order to understand the meaning of these equations, and therefore of …
they satisfy. In order to understand the meaning of these equations, and therefore of …
Remarks on the canonical quantization of the Chern-Simons-Witten theory
S Elitzur, G Moore, A Schwimmer, N Seiberg - Nuclear Physics B, 1989 - Elsevier
REMARKS ON THE CANONICAL QUANTIZATION OF THE CHERN-SIMONS-WITTEN
THEORY 1. Introduction Recently, Wltten [1] has shown that Cher Page 1 Nuclear Physics B326 …
THEORY 1. Introduction Recently, Wltten [1] has shown that Cher Page 1 Nuclear Physics B326 …
Naturality in conformal field theory
G Moore, N Seiberg - Nuclear Physics B, 1989 - Elsevier
We discuss constraints on the operator product coefficients in diagonal and nondiagonal
rational conformal field theories. Nondiagonal modular invariants always arise from …
rational conformal field theories. Nondiagonal modular invariants always arise from …
Gauge theories, vertex models, and quantum groups
E Witten - Nuclear Physics B, 1990 - Elsevier
It is known that the Jones polynomial of knot theory, and its generalizations, are closely
related to the integrable “vertex models” of two-dimensional statistical mechanics, and to …
related to the integrable “vertex models” of two-dimensional statistical mechanics, and to …
[HTML][HTML] Conformal bootstrap, universality and gravitational scattering
We use the conformal bootstrap equations to study the non-perturbative gravitational
scattering between infalling and outgoing particles in the vicinity of a black hole horizon in …
scattering between infalling and outgoing particles in the vicinity of a black hole horizon in …
Yang-Baxter algebras, integrable theories and quantum groups
HJ De Vega - Nuclear Physics B-Proceedings Supplements, 1990 - Elsevier
The Yang-Baxter algebras (YBA) are introduced in a general framework stressing their
power to exactly solve the lattice models associated to them. The algebraic Bethe Ansatz is …
power to exactly solve the lattice models associated to them. The algebraic Bethe Ansatz is …
[BOOK][B] Quantum groups, quantum categories and quantum field theory
J Fröhlich, T Kerler - 2006 - books.google.com
This book reviews recent results on low-dimensional quantum field theories and their
connection with quantum group theory and the theory of braided, balanced tensor …
connection with quantum group theory and the theory of braided, balanced tensor …
Duality and quantum groups
L Alvarez-Gaume, C Goméz, G Sierra - Nuclear Physics B, 1990 - Elsevier
We show that the duality properties of Rational Conformal Field Theories follow from the
defining relations and the representation theory of quantum groups. The fusion and braiding …
defining relations and the representation theory of quantum groups. The fusion and braiding …
Braid group statistics and their superselection rules
KH Rehren - The algebraic theory of superselection sectors …, 1989 - World Scientific
We present recent results on the statistics in low-dimensional quantum field theory. They are
described by unitary representations of the braid group. We discuss the structure of the" …
described by unitary representations of the braid group. We discuss the structure of the" …
The many faces of Ocneanu cells
We define generalised chiral vertex operators covariant under the Ocneanu “double triangle
algebra” A, a novel quantum symmetry intrinsic to a given rational 2d conformal field theory …
algebra” A, a novel quantum symmetry intrinsic to a given rational 2d conformal field theory …