Large language models for software engineering: A systematic literature review

X Hou, Y Zhao, Y Liu, Z Yang, K Wang, L Li… - ACM Transactions on …, 2024 - dl.acm.org
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …

Android source code vulnerability detection: a systematic literature review

J Senanayake, H Kalutarage, MO Al-Kadri… - ACM Computing …, 2023 - dl.acm.org
The use of mobile devices is rising daily in this technological era. A continuous and
increasing number of mobile applications are constantly offered on mobile marketplaces to …

Explainable artificial intelligence in cybersecurity: A survey

N Capuano, G Fenza, V Loia, C Stanzione - Ieee Access, 2022 - ieeexplore.ieee.org
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …

Android mobile malware detection using machine learning: A systematic review

J Senanayake, H Kalutarage, MO Al-Kadri - Electronics, 2021 - mdpi.com
With the increasing use of mobile devices, malware attacks are rising, especially on Android
phones, which account for 72.2% of the total market share. Hackers try to attack …

Deep learning for zero-day malware detection and classification: A survey

F Deldar, M Abadi - ACM Computing Surveys, 2023 - dl.acm.org
Zero-day malware is malware that has never been seen before or is so new that no anti-
malware software can catch it. This novelty and the lack of existing mitigation strategies …

[HTML][HTML] Machine learning for android malware detection: mission accomplished? a comprehensive review of open challenges and future perspectives

A Guerra-Manzanares - Computers & Security, 2024 - Elsevier
The extensive research in machine learning based Android malware detection showcases
high-performance metrics through a wide range of proposed solutions. Consequently, this …

AIBugHunter: A Practical tool for predicting, classifying and repairing software vulnerabilities

M Fu, C Tantithamthavorn, T Le, Y Kume… - Empirical Software …, 2024 - Springer
Abstract Many Machine Learning (ML)-based approaches have been proposed to
automatically detect, localize, and repair software vulnerabilities. While ML-based methods …

Explainable ai for android malware detection: Towards understanding why the models perform so well?

Y Liu, C Tantithamthavorn, L Li… - 2022 IEEE 33rd …, 2022 - ieeexplore.ieee.org
Machine learning (ML)-based Android malware detection has been one of the most popular
research topics in the mobile security community. An increasing number of research studies …

A lightweight deep learning-based android malware detection framework

R Ma, S Yin, X Feng, H Zhu, VS Sheng - Expert Systems with Applications, 2024 - Elsevier
Android, as the most prevalent mobile operating system (OS) in recent years, has been
widely applied in various cell phones, tablets, and embedded devices, greatly facilitating …

Pitfalls in language models for code intelligence: A taxonomy and survey

X She, Y Liu, Y Zhao, Y He, L Li… - arxiv preprint arxiv …, 2023 - arxiv.org
Modern language models (LMs) have been successfully employed in source code
generation and understanding, leading to a significant increase in research focused on …