Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep learning for tomographic image reconstruction
Deep-learning-based tomographic imaging is an important application of artificial
intelligence and a new frontier of machine learning. Deep learning has been widely used in …
intelligence and a new frontier of machine learning. Deep learning has been widely used in …
AI-based reconstruction for fast MRI—A systematic review and meta-analysis
Compressed sensing (CS) has been playing a key role in accelerating the magnetic
resonance imaging (MRI) acquisition process. With the resurgence of artificial intelligence …
resonance imaging (MRI) acquisition process. With the resurgence of artificial intelligence …
Adaptive diffusion priors for accelerated MRI reconstruction
Deep MRI reconstruction is commonly performed with conditional models that de-alias
undersampled acquisitions to recover images consistent with fully-sampled data. Since …
undersampled acquisitions to recover images consistent with fully-sampled data. Since …
Unsupervised MRI reconstruction via zero-shot learned adversarial transformers
Supervised reconstruction models are characteristically trained on matched pairs of
undersampled and fully-sampled data to capture an MRI prior, along with supervision …
undersampled and fully-sampled data to capture an MRI prior, along with supervision …
Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning
Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled
data is important in many clinical applications. In recent years, deep learning-based …
data is important in many clinical applications. In recent years, deep learning-based …
Deep magnetic resonance image reconstruction: Inverse problems meet neural networks
Image reconstruction from undersampled k-space data has been playing an important role
in fast magnetic resonance imaging (MRI). Recently, deep learning has demonstrated …
in fast magnetic resonance imaging (MRI). Recently, deep learning has demonstrated …
Image reconstruction is a new frontier of machine learning
Over past several years, machine learning, or more generally artificial intelligence, has
generated overwhelming research interest and attracted unprecedented public attention. As …
generated overwhelming research interest and attracted unprecedented public attention. As …
Self‐supervised learning of physics‐guided reconstruction neural networks without fully sampled reference data
B Yaman, SAH Hosseini, S Moeller… - Magnetic resonance …, 2020 - Wiley Online Library
Purpose To develop a strategy for training a physics‐guided MRI reconstruction neural
network without a database of fully sampled data sets. Methods Self‐supervised learning via …
network without a database of fully sampled data sets. Methods Self‐supervised learning via …
Recommended implementation of quantitative susceptibility map** for clinical research in the brain: a consensus of the ISMRM electro‐magnetic tissue properties …
QSM Consensus Organization … - Magnetic resonance …, 2024 - Wiley Online Library
This article provides recommendations for implementing QSM for clinical brain research. It is
a consensus of the International Society of Magnetic Resonance in Medicine, Electro …
a consensus of the International Society of Magnetic Resonance in Medicine, Electro …
CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions
Cardiac CINE magnetic resonance imaging is the gold-standard for the assessment of
cardiac function. Imaging accelerations have shown to enable 3D CINE with left ventricular …
cardiac function. Imaging accelerations have shown to enable 3D CINE with left ventricular …