Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

An overview of multi-agent reinforcement learning from game theoretical perspective

Y Yang, J Wang - arxiv preprint arxiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …

Proxskip: Yes! local gradient steps provably lead to communication acceleration! finally!

K Mishchenko, G Malinovsky, S Stich… - International …, 2022 - proceedings.mlr.press
We introduce ProxSkip—a surprisingly simple and provably efficient method for minimizing
the sum of a smooth ($ f $) and an expensive nonsmooth proximable ($\psi $) function. The …

A unified theory of decentralized SGD with changing topology and local updates

A Koloskova, N Loizou, S Boreiri… - … on machine learning, 2020 - proceedings.mlr.press
Decentralized stochastic optimization methods have gained a lot of attention recently, mainly
because of their cheap per iteration cost, data locality, and their communication-efficiency. In …

Communication-efficient distributed learning: An overview

X Cao, T Başar, S Diggavi, YC Eldar… - IEEE journal on …, 2023 - ieeexplore.ieee.org
Distributed learning is envisioned as the bedrock of next-generation intelligent networks,
where intelligent agents, such as mobile devices, robots, and sensors, exchange information …

A survey of distributed optimization

T Yang, X Yi, J Wu, Y Yuan, D Wu, Z Meng… - Annual Reviews in …, 2019 - Elsevier
In distributed optimization of multi-agent systems, agents cooperate to minimize a global
function which is a sum of local objective functions. Motivated by applications including …

Fully decentralized multi-agent reinforcement learning with networked agents

K Zhang, Z Yang, H Liu, T Zhang… - … conference on machine …, 2018 - proceedings.mlr.press
We consider the fully decentralized multi-agent reinforcement learning (MARL) problem,
where the agents are connected via a time-varying and possibly sparse communication …

Network topology and communication-computation tradeoffs in decentralized optimization

A Nedić, A Olshevsky, MG Rabbat - Proceedings of the IEEE, 2018 - ieeexplore.ieee.org
In decentralized optimization, nodes cooperate to minimize an overall objective function that
is the sum (or average) of per-node private objective functions. Algorithms interleave local …

Push–pull gradient methods for distributed optimization in networks

S Pu, W Shi, J Xu, A Nedić - IEEE Transactions on Automatic …, 2020 - ieeexplore.ieee.org
In this article, we focus on solving a distributed convex optimization problem in a network,
where each agent has its own convex cost function and the goal is to minimize the sum of …

Harnessing smoothness to accelerate distributed optimization

G Qu, N Li - IEEE Transactions on Control of Network Systems, 2017 - ieeexplore.ieee.org
There has been a growing effort in studying the distributed optimization problem over a
network. The objective is to optimize a global function formed by a sum of local functions …