A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …
generated in great volume by both physical sensors and online processes (virtual sensors) …
Machine learning and deep learning methods for intrusion detection systems: A survey
H Liu, B Lang - applied sciences, 2019 - mdpi.com
Networks play important roles in modern life, and cyber security has become a vital research
area. An intrusion detection system (IDS) which is an important cyber security technique …
area. An intrusion detection system (IDS) which is an important cyber security technique …
Elic: Efficient learned image compression with unevenly grouped space-channel contextual adaptive coding
Recently, learned image compression techniques have achieved remarkable performance,
even surpassing the best manually designed lossy image coders. They are promising to be …
even surpassing the best manually designed lossy image coders. They are promising to be …
A survey on deep learning for data-driven soft sensors
Soft sensors are widely constructed in process industry to realize process monitoring, quality
prediction, and many other important applications. With the development of hardware and …
prediction, and many other important applications. With the development of hardware and …
Pooling methods in deep neural networks, a review
H Gholamalinezhad, H Khosravi - arxiv preprint arxiv:2009.07485, 2020 - arxiv.org
Nowadays, Deep Neural Networks are among the main tools used in various sciences.
Convolutional Neural Network is a special type of DNN consisting of several convolution …
Convolutional Neural Network is a special type of DNN consisting of several convolution …
[ΒΙΒΛΙΟ][B] Neural networks and deep learning
CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …
McDonald Neural networks were developed to simulate the human nervous system for …
Auto-encoders in deep learning—a review with new perspectives
S Chen, W Guo - Mathematics, 2023 - mdpi.com
Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure …
development of neural networks. The auto-encoder is a key component of deep structure …
A survey of deep learning methods for cyber security
DS Berman, AL Buczak, JS Chavis, CL Corbett - Information, 2019 - mdpi.com
This survey paper describes a literature review of deep learning (DL) methods for cyber
security applications. A short tutorial-style description of each DL method is provided …
security applications. A short tutorial-style description of each DL method is provided …
Poolnet+: Exploring the potential of pooling for salient object detection
We explore the potential of pooling techniques on the task of salient object detection by
expanding its role in convolutional neural networks. In general, two pooling-based modules …
expanding its role in convolutional neural networks. In general, two pooling-based modules …
Deep learning for smart manufacturing: Methods and applications
Smart manufacturing refers to using advanced data analytics to complement physical
science for improving system performance and decision making. With the widespread …
science for improving system performance and decision making. With the widespread …