A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection

M **, HY Koh, Q Wen, D Zambon… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Time series are the primary data type used to record dynamic system measurements and
generated in great volume by both physical sensors and online processes (virtual sensors) …

Machine learning and deep learning methods for intrusion detection systems: A survey

H Liu, B Lang - applied sciences, 2019 - mdpi.com
Networks play important roles in modern life, and cyber security has become a vital research
area. An intrusion detection system (IDS) which is an important cyber security technique …

Elic: Efficient learned image compression with unevenly grouped space-channel contextual adaptive coding

D He, Z Yang, W Peng, R Ma… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recently, learned image compression techniques have achieved remarkable performance,
even surpassing the best manually designed lossy image coders. They are promising to be …

A survey on deep learning for data-driven soft sensors

Q Sun, Z Ge - IEEE Transactions on Industrial Informatics, 2021 - ieeexplore.ieee.org
Soft sensors are widely constructed in process industry to realize process monitoring, quality
prediction, and many other important applications. With the development of hardware and …

Pooling methods in deep neural networks, a review

H Gholamalinezhad, H Khosravi - arxiv preprint arxiv:2009.07485, 2020 - arxiv.org
Nowadays, Deep Neural Networks are among the main tools used in various sciences.
Convolutional Neural Network is a special type of DNN consisting of several convolution …

[ΒΙΒΛΙΟ][B] Neural networks and deep learning

CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …

Auto-encoders in deep learning—a review with new perspectives

S Chen, W Guo - Mathematics, 2023 - mdpi.com
Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure …

A survey of deep learning methods for cyber security

DS Berman, AL Buczak, JS Chavis, CL Corbett - Information, 2019 - mdpi.com
This survey paper describes a literature review of deep learning (DL) methods for cyber
security applications. A short tutorial-style description of each DL method is provided …

Poolnet+: Exploring the potential of pooling for salient object detection

JJ Liu, Q Hou, ZA Liu, MM Cheng - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
We explore the potential of pooling techniques on the task of salient object detection by
expanding its role in convolutional neural networks. In general, two pooling-based modules …

Deep learning for smart manufacturing: Methods and applications

J Wang, Y Ma, L Zhang, RX Gao, D Wu - Journal of manufacturing systems, 2018 - Elsevier
Smart manufacturing refers to using advanced data analytics to complement physical
science for improving system performance and decision making. With the widespread …